80 research outputs found

    Collective excitations in a magnetically doped quantized Hall ferromagnet

    Full text link
    A theory of collective states in a magnetically quantized two-dimensional electron gas (2DEG) with half-filled Landau level (quantized Hall ferromagnet) in the presence of magnetic 3d impurities is developed. The spectrum of bound and delocalized spin-excitons as well as the renormalization of Zeeman splitting of the impurity 3d levels due to the indirect exchange interaction with the 2DEG are studied for the specific case of n-type GaAs doped with Mn where the Lande` g-factors of impurity and 2DEG have opposite signs. If the sign of the 2DEG g-factor is changed due to external influences, then impurity related transitions to new ground state phases, presenting various spin-flip and skyrmion-like textures, are possible. Conditions for existence of these phases are discussed. PACS: 73.43.Lp, 73.21.Fg, 72.15.RnComment: 32 pages including 7 figures. To be published in Phys. Rev.

    Classical and quantum radiation of perturbed discrete breathers

    Full text link
    We show that the linearized phase space flow around a discrete breather solution is not capable of generating persistent energy flow away from the breather even in the case of instabilities of extended states. This holds both for the classical and quantized description of the flow. The main reason for that is the parametric driving the breather provides to the flow. Corresponding scaling arguments are derived for both classical and quantum cases. Numerical simulations of the classical flow support our findings.Comment: 8 pages, 3 figure

    Spin-engineered quantum dots

    Full text link
    Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to createn and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nulear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of binding electrons with energy up to several meV and the localization radius > > 100\AA.Comment: 9 pages, 1 figure, submitted to Physica E, Augist 31, 200

    Double exchange mechanisms for Mn doped III-V ferromagnetic semiconductors

    Full text link
    A microscopic model of indirect exchange interaction between transition metal impurities in dilute magnetic semiconductors (DMS) is proposed. The hybridization of the impurity d-electrons with the heavy hole band states is largely responsible for the transfer of electrons between the impurities, whereas Hund rule for the electron occupation of the impurity d-shells makes the transfer spin selective. The model is applied to such systems as n−n-type GaN:Mn and p−p-type (Ga,Mn)As, p−p-type (Ga,Mn)P. In n−n-type DMS with Mn2+/3+^{2+/3+} impurities the exchange mechanisms is rather close to the kinematic exchange proposed by Zener for mixed-valence Mn ions. In p−p-type DMS ferromagnetism is governed by the kinematic mechanism involving the kinetic energy gain of heavy hole carriers caused by their hybridization with 3d electrons of Mn2+^{2+} impurities. Using the molecular field approximation the Curie temperatures TCT_C are calculated for several systems as functions of the impurity and hole concentrations. Comparison with the available experimental data shows a good agreement.Comment: Submitted to PR
    • …
    corecore