265 research outputs found

    Crystal engineering using functionalized adamantane

    Full text link
    We performed a first principles investigation on the structural, electronic, and optical properties of crystals made of chemically functionalized adamantane molecules. Several molecular building blocks, formed by boron and nitrogen substitutional functionalizations, were considered to build zincblende and wurtzite crystals, and the resulting structures presented large bulk moduli and cohesive energies, wide and direct bandgaps, and low dielectric constants (low-κ\kappa materials). Those properties provide stability for such structures up to room temperature, superior to those of typical molecular crystals. This indicates a possible road map for crystal engineering using functionalized diamondoids, with potential applications ranging from space filling between conducting wires in nanodevices to nano-electro-mechanical systems

    Structural, Electronic, and Vibrational Properties of Amino-adamantane and Rimantadine Isomers

    Full text link
    We performed a first principles total energy investigation on the structural, electronic, and vibrational properties of adamantane molecules, functionalized with amine and ethanamine groups. We computed the vibrational signatures of amantadine and rimantadine isomers with the functional groups bonded to different carbon sites. By comparing our results with recent infrared and Raman spectroscopic data, we discuss the possible presence of different isomers in experimental samples

    Functionalized adamantane: fundamental building blocks for nanostructure self-assembly

    Full text link
    We report first principles calculations on the electronic and structural properties of chemically functionalized adamantane molecules, either in isolated or crystalline forms. Boron and nitrogen functionalized molecules, aza-, tetra-aza-, bora-, and tetra-bora-adamantane, were found to be very stable in terms of energetics, consistent with available experimental data. Additionally, a hypothetical molecular crystal in a zincblende structure, involving the pair tetra-bora-adamantane and tetra-aza-adamantane, was investigated. This molecular crystal presented a direct and large electronic bandgap and a bulk modulus of 20 GPa. The viability of using those functionalized molecules as fundamental building blocks for nanostructure self-assembly is discussed

    Electronic properties and hyperfine fields of nickel-related complexes in diamond

    Full text link
    We carried out a first principles investigation on the microscopic properties of nickel-related defect centers in diamond. Several configurations, involving substitutional and interstitial nickel impurities, have been considered either in isolated configurations or forming complexes with other defects, such as vacancies and boron and nitrogen dopants. The results, in terms of spin, symmetry, and hyperfine fields, were compared with the available experimental data on electrically active centers in synthetic diamond. Several microscopic models, previously proposed to explain those data, have been confirmed by this investigation, while some models could be discarded. We also provided new insights on the microscopic structure of several of those centers.Comment: 21 pages, 8 figure

    Doped 2D diamond: properties and applications

    Full text link
    In the present paper, we investigate the structural, thermodynamic, dynamic, elastic, and electronic properties of doped 2D diamond C4_4X2_2 (X = B or N) nanosheets in both AA'A'' and ABC stacking configurations, by first-principles calculations. Those systems are composed of 3 diamond-like graphene sheets, with an undoped graphene layer between two 50% doped ones. Our results, based on the analysis of ab-initio molecular dynamics simulations, phonon dispersion spectra, and Born's criteria for mechanical stability, revealed that all four structures are stable. Additionally, their standard enthalpy of formation values are similar to the one of pristine 2D diamond, recently synthesized by compressing three graphene layers. The C4_4X2_2 (X = B or N) systems exhibit high elastic constant values and stiffness comparable to the diamond. The C4_4N2_2 nanosheets present wide indirect band gaps that could be advantageous for applications similar to the ones of the hexagonal boron nitride (h-BN), such as a substrate for high-mobility 2D devices. On the other hand, the C4_4B2_2 systems are semiconductors with direct band gaps, in the 1.6 - 2.0 eV range, and small effective masses, which are characteristics that may be favorable to high carrier mobility and optoelectronics applications

    Alterações estruturais de Cr-beidelita tratada até 1350 °C em atmosferas de oxigênio ou nitrogênio

    Get PDF
    Beidellite clay mineral after intercalation of OH-Cr(III) species were thermally analyzed up to 1350 °C in oxygen and nitrogenatmospheres. OH-Cr-beidellite can be used as a pillared clay precursor for catalysis or as adsorbent applications. However, inthis paper beidellite enriched in chromium were analyzed at different thermal treatments up to high temperature for evaluatingstructural changes for possible future ceramic applications. The structural changes were followed by thermal analysis and X-raydiffraction. The thermal treatment of OH-Cr-beidellite in oxygen and nitrogen atmospheres developed different mineralogicalphases up to 1050 °C, but at higher temperatures, the same phases were developed in both atmosphere treatments. Eskolaitephase (Cr2O3) appeared in the sample after heating at 400 °C in oxygen atmosphere, whereas grimaldite (CrO-OH) in nitrogenatmosphere, maintaining the starting phases. At 1000 °C the raw clay minerals disappeared, as it is knew. At 1050 °C in nitrogenatmosphere, grimaldite was absent and eskolaite appeared. At 1350 °C in the samples calcined in both atmospheres, quartz,cristobalite and mullite as the main phases and in lower contents aluminum oxide and aluminum-chromium oxide [(Al,Cr)2O3]were present.O mineral de argila de beidelita após intercalação das espécies OH-Cr(III) foi termicamente analisado até 1350 °C em atmosferas de oxigénio e nitrogênio. A OH-Cr-beidelita pode ser utilizada como um precursor de argila pilarizada para catálise ou para aplicações adsorventes. No entanto, neste trabalho, a beidelita enriquecida em cromo foi analisada em diferentes tratamentos térmicos até alta temperatura para avaliação de mudanças estruturais para possíveis aplicações cerâmicas futuras. As alterações estruturais foram acompanhadas por análise térmica e difração de raios X. O tratamento térmico da OH-Cr-beidelita em atmosferas de oxigênio e nitrogênio desenvolveu diferentes fases mineralógicas até 1050 °C, mas em temperaturas mais altas, as mesmas fases foram desenvolvidas em ambas atmosferas. A fase eskolaita (Cr2 O3 ) apareceu na amostra após aquecimento a 400 °C em atmosfera de oxigênio, enquanto grimaldita (CrO-OH) em atmosfera de nitrogênio, mantendo as fases iniciais. Em 1000 °C, os minerais originais da argila desapareceram, como é conhecido. Em 1050 °C em atmosfera de nitrogênio, a grimaldita estava ausente e apareceu eskolaita. Em amostras calcinadas a 1350 °C em ambas as atmosferas, estavam presentes quartzo, cristobolita e mulita como fases principais e em menores teores óxido de alumínio e óxido de alumínio e cromo [(Al,Cr)2 O3 ].Centro de Tecnología de Recursos Minerales y Cerámic
    corecore