15 research outputs found

    Accurate relativistic many-body calculations of van der Waals coefficients C_8 and C_10 for alkali-metal dimers

    Full text link
    We consider long-range interactions between two alkali-metal atoms in their respective ground states. We extend the previous relativistic many-body calculations of C_6 dispersion coefficients [Phys.Rev. Lett. {\bf 82}, 3589 (1999)] to higher-multipole coefficients C_8 and C_10. A special attention is paid to usually omitted contribution of core-excited states. We calculate this contribution within relativistic random-phase approximation and demonstrate that for heavy atoms core excitations contribute as much as 10% to the dispersion coefficients. We tabulate results for both homonuclear and heteronuclear dimers and estimate theoretical uncertainties. The estimated uncertainties for C_8 coefficients range from 0.5% for Li_2 to 4% for Cs_2.Comment: 12 pages, submitted to Journal of Chemical Physic

    Relativistic corrections to isotope shift in light ions

    Get PDF
    We calculate isotope mass shift for several light ions using Dirac wave functions and mass shift operator with relativistic corrections of the order of (αZ)2(\alpha Z)^2. Calculated relativistic corrections to the specific mass shift vary from a fraction of a percent for Carbon, to 2% for Magnesium. Relativistic corrections to the normal mass shift are typically smaller. Interestingly, the final relativistic mass shifts for the levels of one multiplet appear to be even closer than for non-relativistic operator. That can be important for the astrophysical search for possible α\alpha-variation, where isotope shift is a source of important systematic error. Our calculations show that for levels of the same multiplet this systematics is negligible and they can be used as probes for α\alpha-variation.Comment: 7 pages, 5 tables, revtex

    Transition frequency shifts with fine structure constant variation for Fe II: Breit and core-valence correlation correction

    Full text link
    Transition frequencies of Fe II ion are known to be very sensitive to variation of the fine structure constant \alpha. The resonance absorption lines of Fe II from objects at cosmological distances are used in a search for the possible variation of \alpha in cause of cosmic time. In this paper we calculated the dependence of the transition frequencies on \alpha^2 (q-factors) for Fe II ion. We found corrections to these coefficients from valence-valence and core-valence correlations and from the Breit interaction. Both the core-valence correlation and Breit corrections to the q-factors appeared to be larger than had been anticipated previously. Nevertheless our calculation confirms that the Fe II absorption lines seen in quasar spectra have large q-factors of both signs and thus the ion Fe II alone can be used in the search for the \alpha-variation at different cosmological epochs.Comment: 7 pages, submitted to Phys. Rev.

    Development of a configuration-interaction + all-order method for atomic calculations

    Full text link
    We develop a theoretical method within the framework of relativistic many-body theory to accurately treat correlation corrections in atoms with few valence electrons. This method combines the all-order approach currently used in precision calculations of properties of monovalent atoms with the configuration-interaction approach that is applicable for many-electron systems. The method is applied to Mg, Ca, Sr, Zn, Cd, Ba, and Hg to evaluate ionization energies and low-lying energy levels.Comment: 10 page

    Relativistic calculations of the K-K charge transfer and K-vacancy production probabilities in low-energy ion-atom collisions

    Full text link
    The previously developed technique for evaluation of charge-transfer and electron-excitation processes in low-energy heavy-ion collisions [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701(2010)] is extended to collisions of ions with neutral atoms. The method employs the active electron approximation, in which only the active electron participates in the charge transfer and excitation processes while the passive electrons provide the screening DFT potential. The time-dependent Dirac wave function of the active electron is represented as a linear combination of atomic-like Dirac-Fock-Sturm orbitals, localized at the ions (atoms). The screening DFT potential is calculated using the overlapping densities of each ions (atoms), derived from the atomic orbitals of the passive electrons. The atomic orbitals are generated by solving numerically the one-center Dirac-Fock and Dirac-Fock-Sturm equations by means of a finite-difference approach with the potential taken as the sum of the exact reference ion (atom) Dirac-Fock potential and of the Coulomb potential from the other ion within the monopole approximation. The method developed is used to calculate the K-K charge transfer and K-vacancy production probabilties for the Ne(1s22s22p6)(1s^2 2s^2 2p^6) -- F8+(1s)^{8+}(1s) collisions at the F8+(1s)^{8+}(1s) projectile energies 130 keV/u and 230 keV/u. The obtained results are compared with experimental data and other theoretical calculations. The K-K charge transfer and K-vacancy production probabilities are also calculated for the Xe -- Xe53+(1s)^{53+}(1s) collision.Comment: 16 pages, 4 figure

    High accuracy calculation of 6s -> 7s parity nonconserving amplitude in Cs

    Get PDF
    We calculated the parity nonconserving (PNC) 6s -> 7s amplitude in Cs. In the Dirac-Coulomb approximation our result is in a good agreement with other calculations. Breit corrections to the PNC amplitude and to the Stark-induced amplitude ÎČ\beta are found to be -0.4% and -1% respectively. The weak charge of 133^{133}Cs is QW=−72.5±0.7Q_W=-72.5 \pm 0.7 in agreement with the standard model.Comment: 4 pages, LaTeX2e, uses revtex4.cls, submitted to PR

    Coefficients of sensitivity to α

    No full text
    corecore