18,845 research outputs found

    Connecting lattice and relativistic models via conformal field theory

    Full text link
    We consider the quantum group invariant XXZ-model. In infrared limit it describes Conformal Field Theory with modified energy-momentum tensor. The correlation functions are related to solutions of level -4 of qKZ equations. We describe these solutions relating them to level 0 solutions. We further consider general matrix elements (form factors) containing local operators and asymptotic states. We explain that the formulae for solutions of qKZ equations suggest a decomposition of these matrix elements with respect to states of corresponding Conformal Field Theory .Comment: 22 pages, 1 figur

    On orthogonal expansions of the space of vector functions which are square-summable over a given domain and the vector analysis operators

    Get PDF
    The Hilbert space L2(omega) of vector functions is studied. A breakdown of L2(omega) into orthogonal subspaces is discussed and the properties of the operators for projection onto these subspaces are investigated from the standpoint of preserving the differential properties of the vectors being projected. Finally, the properties of the operators are examined

    Two-Loop Sudakov Form Factor in a Theory with Mass Gap

    Full text link
    The two-loop Sudakov form factor is computed in a U(1) model with a massive gauge boson and a U(1)×U(1)U(1)\times U(1) model with mass gap. We analyze the result in the context of hard and infrared evolution equations and establish a matching procedure which relates the theories with and without mass gap setting the stage for the complete calculation of the dominant two-loop corrections to electroweak processes at high energy.Comment: Latex, 5 pages, 2 figures. Bernd Feucht is Bernd Jantzen in later publications. (The contents of the paper is unchanged.

    Q2237+0305 source structure and dimensions from light curves simulation

    Full text link
    Assuming a two-component quasar structure model consisting of a central compact source and an extended outer feature, we produce microlensing simulations for a population of star-like objects in the lens galaxy. Such a model is a simplified version of that adopted to explain the brightness variations observed in Q0957 (Schild & Vakulik 2003). The microlensing light curves generated for a range of source parameters were compared to the light curves obtained in the framework of the OGLE program. With a large number of trials we built, in the domain of the source structure parameters, probability distributions to find "good" realizations of light curves. The values of the source parameters which provide the maximum of the joint probability distribution calculated for all the image components, have been accepted as estimates for the source structure parameters. The results favour the two-component model of the quasar brightness structure over a single compact central source model, and in general the simulations confirm the Schild-Vakulik model that previously described successfully the microlensing and other properties of Q0957. Adopting 3300 km/s for the transverse velocity of the source, the effective size of the central source was determined to be about 2x10^15 cm, and Epsilon =2 was obtained for the ratio of the integral luminosity of the outer feature to that of the central source.Comment: 7 pages, 4 figures, LaTe

    Four-dimensional integration by parts with differential renormalization as a method of evaluation of Feynman diagrams

    Get PDF
    It is shown how strictly four-dimensional integration by parts combined with differential renormalization and its infrared analogue can be applied for calculation of Feynman diagrams.Comment: 6 pages, late
    corecore