7 research outputs found

    Dynamics of particles and manifolds in a quenched random force field

    Full text link
    We study the dynamics of a directed manifold of internal dimension D in a d-dimensional random force field. We obtain an exact solution for d→∞d \to \infty and a Hartree approximation for finite d. They yield a Flory-like roughness exponent ζ\zeta and a non trivial anomalous diffusion exponent ν\nu continuously dependent on the ratio gT/gLg_{T}/g_{L} of divergence-free (gTg_{T}) to potential (gLg_{L}) disorder strength. For the particle (D=0) our results agree with previous order ϵ2\epsilon^2 RG calculations. The time-translational invariant dynamics for gT>0g_{T} >0 smoothly crosses over to the previously studied ultrametric aging solution in the potential case.Comment: 5 pages, Latex fil

    Anderson localization transition with long-ranged hoppings : analysis of the strong multifractality regime in terms of weighted Levy sums

    Full text link
    For Anderson tight-binding models in dimension dd with random on-site energies ϵr⃗\epsilon_{\vec r} and critical long-ranged hoppings decaying typically as Vtyp(r)∼V/rdV^{typ}(r) \sim V/r^d, we show that the strong multifractality regime corresponding to small VV can be studied via the standard perturbation theory for eigenvectors in quantum mechanics. The Inverse Participation Ratios Yq(L)Y_q(L), which are the order parameters of Anderson transitions, can be written in terms of weighted L\'evy sums of broadly distributed variables (as a consequence of the presence of on-site random energies in the denominators of the perturbation theory). We compute at leading order the typical and disorder-averaged multifractal spectra τtyp(q)\tau_{typ}(q) and τav(q)\tau_{av}(q) as a function of qq. For q<1/2q<1/2, we obtain the non-vanishing limiting spectrum τtyp(q)=τav(q)=d(2q−1)\tau_{typ}(q)=\tau_{av}(q)=d(2q-1) as V→0+V \to 0^+. For q>1/2q>1/2, this method yields the same disorder-averaged spectrum τav(q)\tau_{av}(q) of order O(V)O(V) as obtained previously via the Levitov renormalization method by Mirlin and Evers [Phys. Rev. B 62, 7920 (2000)]. In addition, it allows to compute explicitly the typical spectrum, also of order O(V)O(V), but with a different qq-dependence τtyp(q)≠τav(q)\tau_{typ}(q) \ne \tau_{av}(q) for all q>qc=1/2q>q_c=1/2. As a consequence, we find that the corresponding singularity spectra ftyp(α)f_{typ}(\alpha) and fav(α)f_{av}(\alpha) differ even in the positive region f>0f>0, and vanish at different values α+typ>α+av\alpha_+^{typ} > \alpha_+^{av}, in contrast to the standard picture. We also obtain that the saddle value αtyp(q)\alpha_{typ}(q) of the Legendre transform reaches the termination point α+typ\alpha_+^{typ} where ftyp(α+typ)=0f_{typ}(\alpha_+^{typ})=0 only in the limit q→+∞q \to +\infty.Comment: 13 pages, 2 figures, v2=final versio

    Comment on ``Critical Behavior in Disordered Quantum Systems Modified by Broken Time--Reversal Symmetry''

    Full text link
    In a recent Letter [Phys. Rev. Lett. 80, 1003 (1998)] Hussein and Pato employed the maximum entropy principle (MEP) in order to derive interpolating ensembles between any pair of universality classes in random matrix theory. They apply their formalism also to the transition from random matrix to Poisson statistics of spectra that is observed for the case of the Anderson-type metal-insulator transition. We point out the problems with the latter procedure.Comment: 1 page in PS, to appear in PRL Sept. 2

    Wavefunction and level statistics of random two dimensional gauge fields

    Full text link
    Level and wavefunction statistics have been studied for two dimensional clusters of the square lattice in the presence of random magnetic fluxes. Fluxes traversing lattice plaquettes are distributed uniformly between - (1/2) Phi_0 and (1/2) Phi_0 with Phi_0 the flux quantum. All considered statistics start close to the corresponding Wigner-Dyson distribution for small system sizes and monotonically move towards Poisson statistics as the cluster size increases. Scaling is quite rapid for states close to the band edges but really difficult to observe for states well within the band. Localization properties are discussed considering two different scenarios. Experimental measurement of one of the considered statistics --wavefunction statistics seems the most promising one-- could discern between both possibilities. A real version of the previous model, i.e., a system that is invariant under time reversal, has been studied concurrently to get coincidences and differences with the Hermitian model.Comment: 12 twocolumnn pages in revtex style, 17 postscript figures, to be published in PRB, send comments to [email protected]
    corecore