15,683 research outputs found

    Extended symmetrical classical electrodynamics

    Full text link
    In the present article, we discuss a modification of classical electrodynamics in which ``ordinary'' point charges are absent. The modified equations contain additional terms describing the induced charges and currents. The densities of the induced charges and currents depend on the vector k and the vectors of the electromagnetic field E and B. It is shown that the vectors E and B can be defined in terms of two 4-potentials and the components of k are the components of the 4-tensor of the third rank. The Lagrangian of modified electrodynamics is defined. The conditions are derived at which only one 4-potential determines the behavior of the electromagnetic field. It is also shown that static modified electrodynamics can describe the electromagnetic field in the inner region of the electric monopole. In the outer region of the electric monopole the electric field is governed by the Maxwell equations. It follows from boundary conditions at the interface between the inner and outer regions of the monopole that the vector k has a discrete spectrum. The electric and magnetic fields, energy and angular momentum of the monopole are found for different eigenvalues of k

    Quantitative pharmacologic MRI: Mapping the cerebral blood volume response to cocaine in dopamine transporter knockout mice

    Get PDF
    The use of pharmacologic MRI (phMRI) in mouse models of brain disorders allows noninvasive in vivo assessment of drug-modulated local cerebral blood volume changes (ΔCBV) as one correlate of neuronal and neurovascular activities. In this report, we employed CBV-weighted phMRI to compare cocaine-modulated neuronal activity in dopamine transporter (DAT) knockout (KO) and wild-typemice. Cocaine acts to block the dopamine, norepinephrine, and serotonin transporters (DAT, NET, and SERT) that clear their respective neurotransmitters from the synapses, helping to terminate cognate neurotransmission. Cocaine consistently reduced CBV, with a similar pattern of regional ΔCBV in brain structures involved inmediating reward in both DAT genotypes. The largest effects (−20% to −30% ΔCBV) were seen in the nucleus accumbens and several cortical regions. Decreasing response amplitudes to cocaine were noted in more posterior components of the cortico-mesolimbic circuit. DAT KO mice had significantly attenuated ΔCBV amplitudes, shortened times to peak response, and reduced response duration in most regions. This study demonstrates that DAT knockout does not abolish the phMRI responses to cocaine, suggesting that adaptations to loss of DAT and/or retained cocaine activity in other monoamine neurotransmitter systems underlie these responses in DAT KO mice

    Exact N-vortex solutions to the Ginzburg-Landau equations for kappa=1/sqrt(2)

    Full text link
    The N-vortex solutions to the two-dimensional Ginzburg - Landau equations for the kappa=1/\sqrt(2) parameter are built. The exact solutions are derived for the vortices with large numbers of the magnetic flux quanta. The size of vortex core is supposed to be much greater than the magnetic field penetration depth. In this limiting case the problem is reduced to the determination of vortex core shape. The corresponding nonlinear boundary problem is solved by means of the methods of the theory of analytic functions.Comment: 12 pages in RevTex, 1 Postscript figur

    Magnetic structures of RbCuCl_3 in a transverse field

    Full text link
    A recent high-field magnetization experiment found a phase transition of unknown character in the layered, frustrated antiferromagnet RbCuCl_3, in a transverse field (in the layers). Motivated by these results, we have examined the magnetic structures predicted by a model of RbCuCl_3, using the classical approximation. At small fields, we obtain the structure already known to be optimal, an incommensurate (IC) spiral with wave vector q in the layers. At higher fields, we find a staircase of long-period commensurate (C) phases (separated initially by the low-field IC phase), then two narrow IC phases, then a fourth IC phase (also with intermediate C phases), and finally the ferromagnetically aligned phase at the saturation field H_S. The three-sublattice C states familiar from the theory of the triangular antiferromagnet are never optimal. The C phases and the two intermediate IC phases were previously unknown in this context. The magnetization is discontinuous at a field \approx 0.4H_S, in qualitative agreement with experiment, though we find much fine structure not reported.Comment: 9 pages, 8 figure

    Clonal analysis of patient-derived samples using cellular barcodes

    Get PDF
    Cellular barcoding is a relatively simple method that allows quantitative assessment of the clonal dynamics of normal, nonmalignant hematopoietic stem cells and of leukemia. Cellular barcodes are (semi-)random synthetic DNA sequences of a fixed length, which are used to uniquely mark and track cells over time. A successful barcoding experiment consists of several essential steps, including library production, transfection, transduction, barcode retrieval, and barcode data analysis. Key challenges are to obtain sufficient number of barcoded cells to conduct experiments and reliable barcode data analysis. This is especially relevant for experiments using primary leukemia cells (which are of limited availability and difficult to transduce), when studying low levels of chimerism, or when the barcoded cell population is sorted in different smaller subpopulations (e.g., lineage contribution of normal hematopoietic stem cells in murine xenografts). In these settings, retrieving accurate barcode data from low input material using standard PCR amplification techniques might be challenging and more sophisticated approaches are required. In this chapter we describe the procedures to transfect and transduce patient-derived leukemia cells, to retrieve barcoded data from both high and low input material, and to filter barcode data from sequencing noise prior to quantitative clonal analysis

    ESR evidence for disordered magnetic phase from ultra-small carbon nanotubes embedded in zeolite nanochannels

    Full text link
    A multi-frequency electron spin resonance (ESR) study provides evidence for the occurrence of low temperature ferromagnetic/spin-glass behavior in aligned arrays of sub-nanometer single walled carbon nanotubes confined in zeolite nano-channels, owing to sp2-type non-bonding carbon associated localized states with density of ~3 x 1019 /g. Features related to the much anticipated conduction ESR are not detected. In the paramagnetic phase, the ESR linewidth is found to be weakly dependent on microwave frequency.Comment: Accepted to be published in EuroPhysics Letter

    Statics and dynamics of domain patterns in hexagonal-orthorhombic ferroelastics

    Full text link
    We study the statics and the dynamics of domain patterns in proper hexagonal-orthorhombic ferroelastics; these patterns are of particular interest because they provide a rare physical realization of disclinations in crystals. Both our static and dynamical theories are based entirely on classical, nonlinear elasticity theory; we use the minimal theory consistent with stability, symmetry and ability to explain qualitatively the observed patterns. After scaling, the only parameters of the static theory are a temperature variable and a stiffness variable. For moderate to large stiffness, our static results show nested stars, unnested stars, fans and other nodes, triangular and trapezoidal regions of trapped hexagonal phase, etc observed in electron microscopy of Ta4N and Mg-Cd alloys, and also in lead orthovanadate (which is trigonal-monoclinic); we even find imperfections in some nodes, like those observed. For small stiffness, we find patterns like those observed in the mineral Mg-cordierite. Our dynamical studies of growth and relaxation show the formation of these static patterns, and also transitory structures such as 12-armed bursts, streamers and striations which are also seen experimentally. The major aspects of the growth-relaxation process are quite unlike those in systems with conventional order parameters, for it is inherently nonlocal; for example, the changes from one snapshot to the next are not predictable by inspection.Comment: 9 pages, 3 figures (1 b&w, 2 colour); animations may be viewed at http://huron.physics.utoronto.ca/~curnoe/sim.htm

    A Straightforward Introduction to Continuous Quantum Measurement

    Get PDF
    We present a pedagogical treatment of the formalism of continuous quantum measurement. Our aim is to show the reader how the equations describing such measurements are derived and manipulated in a direct manner. We also give elementary background material for those new to measurement theory, and describe further various aspects of continuous measurements that should be helpful to those wanting to use such measurements in applications. Specifically, we use the simple and direct approach of generalized measurements to derive the stochastic master equation describing the continuous measurements of observables, give a tutorial on stochastic calculus, treat multiple observers and inefficient detection, examine a general form of the measurement master equation, and show how the master equation leads to information gain and disturbance. To conclude, we give a detailed treatment of imaging the resonance fluorescence from a single atom as a concrete example of how a continuous position measurement arises in a physical system.Comment: 24 pages, 3 eps figues. To appear in Contemporary Physic

    Disparity of superconducting and pseudogap scales in low-Tc Bi-2201 cuprates

    Full text link
    We experimentally study transport and intrinsic tunneling characteristics of a single-layer cuprate Bi(2+x)Sr(2-y)CuO(6+delta) with a low superconducting critical temperature Tc < 4 K. It is observed that the superconducting energy, critical field and fluctuation temperature range are scaling down with Tc, while the corresponding pseudogap characteristics have the same order of magnitude as for high-Tc cuprates with 20 to 30 times higher Tc. The observed disparity of the superconducting and pseudogap scales clearly reveals their different origins.Comment: 5 page

    Enhancement of parity and time invariance violation in Radium atom

    Full text link
    There are several factors which lead to a huge enhancement of parity and time invariance violating effects in the Ra atom: very close electronic levels of opposite parity, the large nuclear charge Z and the collective nature of T,P-odd nuclear moments. Experiments with Radium may be used to measure it's nuclear anapole, magnetic quadrupole and Schiff moments. Such measurements provide information about parity and time invariance violating nuclear forces and electron-nucleon interactions.Comment: 4 pages, RevTe
    corecore