179 research outputs found

    On p-Adic Sector of Adelic String

    Full text link
    We consider construction of Lagrangians which are candidates for p-adic sector of an adelic open scalar string. Such Lagrangians have their origin in Lagrangian for a single p-adic string and contain the Riemann zeta function with the d'Alembertian in its argument. In particular, we present a new Lagrangian obtained by an additive approach which takes into account all p-adic Lagrangians. The very attractive feature of this new Lagrangian is that it is an analytic function of the d'Alembertian. Investigation of the field theory with Riemann zeta function is interesting in itself as well.Comment: 10 pages. Presented at the 2nd Conf. on SFT and Related Topics, Moscow, April 2009. Submitted to Theor. Math. Phy

    Nonlocal Dynamics of p-Adic Strings

    Full text link
    We consider the construction of Lagrangians that might be suitable for describing the entire pp-adic sector of an adelic open scalar string. These Lagrangians are constructed using the Lagrangian for pp-adic strings with an arbitrary prime number pp. They contain space-time nonlocality because of the d'Alembertian in argument of the Riemann zeta function. We present a brief review and some new results.Comment: 8 page

    p-Adic and Adelic Harmonic Oscillator with Time-Dependent Frequency

    Get PDF
    The classical and quantum formalism for a p-adic and adelic harmonic oscillator with time-dependent frequency is developed, and general formulae for main theoretical quantities are obtained. In particular, the p-adic propagator is calculated, and the existence of a simple vacuum state as well as adelic quantum dynamics is shown. Space discreteness and p-adic quantum-mechanical phase are noted.Comment: 10 page

    A p-Adic Model of DNA Sequence and Genetic Code

    Full text link
    Using basic properties of p-adic numbers, we consider a simple new approach to describe main aspects of DNA sequence and genetic code. Central role in our investigation plays an ultrametric p-adic information space which basic elements are nucleotides, codons and genes. We show that a 5-adic model is appropriate for DNA sequence. This 5-adic model, combined with 2-adic distance, is also suitable for genetic code and for a more advanced employment in genomics. We find that genetic code degeneracy is related to the p-adic distance between codons.Comment: 13 pages, 2 table

    Zeta Nonlocal Scalar Fields

    Full text link
    We consider some nonlocal and nonpolynomial scalar field models originated from p-adic string theory. Infinite number of spacetime derivatives is determined by the operator valued Riemann zeta function through d'Alembertian â–¡\Box in its argument. Construction of the corresponding Lagrangians L starts with the exact Lagrangian Lp\mathcal{L}_p for effective field of p-adic tachyon string, which is generalized replacing p by arbitrary natural number n and then taken a sum of Ln\mathcal{L}_n over all n. The corresponding new objects we call zeta scalar strings. Some basic classical field properties of these fields are obtained and presented in this paper. In particular, some solutions of the equations of motion and their tachyon spectra are studied. Field theory with Riemann zeta function dynamics is interesting in its own right as well.Comment: 13 pages, submitted to Theoretical and Mathematical Physic

    Functional Classical Mechanics and Rational Numbers

    Full text link
    The notion of microscopic state of the system at a given moment of time as a point in the phase space as well as a notion of trajectory is widely used in classical mechanics. However, it does not have an immediate physical meaning, since arbitrary real numbers are unobservable. This notion leads to the known paradoxes, such as the irreversibility problem. A "functional" formulation of classical mechanics is suggested. The physical meaning is attached in this formulation not to an individual trajectory but only to a "beam" of trajectories, or the distribution function on phase space. The fundamental equation of the microscopic dynamics in the functional approach is not the Newton equation but the Liouville equation for the distribution function of the single particle. The Newton equation in this approach appears as an approximate equation describing the dynamics of the average values and there are corrections to the Newton trajectories. We give a construction of probability density function starting from the directly observable quantities, i.e., the results of measurements, which are rational numbers.Comment: 8 page

    p-Adic Mathematical Physics

    Full text link
    A brief review of some selected topics in p-adic mathematical physics is presented.Comment: 36 page

    Structure, classifcation, and conformal symmetry, of elementary particles over non-archimedean space-time

    Get PDF
    It is known that no length or time measurements are possible in sub-Planckian regions of spacetime. The Volovich hypothesis postulates that the micro-geometry of spacetime may therefore be assumed to be non-archimedean. In this letter, the consequences of this hypothesis for the structure, classification, and conformal symmetry of elementary particles, when spacetime is a flat space over a non-archimedean field such as the pp-adic numbers, is explored. Both the Poincar\'e and Galilean groups are treated. The results are based on a new variant of the Mackey machine for projective unitary representations of semidirect product groups which are locally compact and second countable. Conformal spacetime is constructed over pp-adic fields and the impossibility of conformal symmetry of massive and eventually massive particles is proved
    • …
    corecore