13 research outputs found

    Hyperspectral Remote Sensing for Terrestrial Applications

    Get PDF
    Remote sensing data are considered hyperspectral when the data are gathered from numerous wavebands, contiguously over an entire range of the spectrum (e.g., 400–2500 nm). Goetz (1992) defines hyperspectral remote sensing as “The acquisition of images in hundreds of registered, contiguous spectral bands such that for each picture element of an image it is possible to derive a complete reflectance spectrum.” However, Jensen (2004) defines hyperspectral remote sensing as “The simultaneous acquisition of images in many relatively narrow, contiguous and/or non contiguous spectral bands throughout the ultraviolet, visible, and infrared portions of the electromagnetic spectrum.”..

    A Holistic View of Global Croplands and Their Water Use for Ensuring Global Food Security in the 21st Century through Advanced Remote Sensing and Non-remote Sensing Approaches

    Get PDF
    This paper presents an exhaustive review of global croplands and their water use, for the end of last millennium, mapped using remote sensing and non-remote sensing approaches by world’s leading researchers on the subject. A comparison at country scale of global cropland area estimated by these studies had a high R2-value of 0.89–0.94. The global cropland area estimates amongst different studies are quite close and range between 1.47–1.53 billion hectares. However, significant uncertainties exist in determining irrigated areas which, globally, consume nearly 80% of all human water use. The estimates show that the total water use by global croplands varies between 6,685 to 7,500 km3 yr−1 and of this around 4,586 km3 yr−1 is by rainfed croplands (green water use) and the rest by irrigated croplands (blue water use). Irrigated areas use about 2,099 km3 yr−1 (1,180 km3 yr−1 of blue water and the rest from rain that falls over irrigated croplands). However, 1.6 to 2.5 times the blue water required by irrigated croplands is actually withdrawn from reservoirs or pumping of ground water, suggesting an irrigation efficiency of only between 40–62 percent. The weaknesses, trends, and future directions to precisely estimate the global croplands are examined. Finally, the paper links global croplands and their water use to a paradigm for ensuring future food security

    Inland Valley Wetland Cultivation and Preservation for Africa’s Green and Blue Revolution Using Multi-Sensor Remote Sensing

    Get PDF
    Africa is the second largest continent after Asia with a total area of 30.22 million km2 (including the adjacent islands). It has great rivers such as the River Nile, which is the longest in the world and flows a distance of 6650 km, and the River Congo, which is the deepest in the world, as well as the second largest in the world in terms of water availability. Yet, Africa also has vast stretches of arid, semiarid, and desert lands with little or no water. Further, Africa’s population is projected to increase by four times by the year 2100, reaching about four billion from the current population of little over one billion. Food insecurity and malnutrition are already highest in Africa (Heidhues et al., 2004) and the challenge of meeting the food security needs of the fastest-growing continent in the twenty-first century is daunting. So, many solutions are thought of to ensure food security in Africa. These ideas include such measures as increasing irrigation in a continent that currently has just about 2% of the global irrigated areas (Thenkabail et al., 2009a, 2010), improving crop productivity (kg m−2), and increasing water productivity (kg m−3). However, an overwhelming proportion of Africa’s agriculture now takes place on uplands that have poor soil fertility and water availability (Scholes, 1990). Thereby, the interest in developing sustainable agriculture in Africa’s lowland wetlands, considered by some as the “new frontier” in agriculture, has swiftly increased in recent years. The lowland wetland systems include the big wetland systems that are prominent and widely recognized (Figure 9.1) as well as the less prominent, but more widespread, inland valley (IV) wetlands (Figures 9.2 through 9.8) that are all along the first to highest order river systems..

    Impacts of irrigation tank restoration on water bodies and croplands in Telangana State of India using Landsat time series data and machine learning algorithms

    Get PDF
    In 2014, the State of Telangana in southern India began repairing and restoring more than 46,000 irrigation water tanks (artificial reservoirs) under the Mission Kakatiya project with an investment in excess of USD 2 billion. In this study, we attempted to map the temporal changes that have occurred in cropland areas and water bodies as a result of the project, using remote sensing imagery and applying land use/land cover (LULC) mapping algorithms. We used 16-day time series data from Landsat 8 to study the spatial distribution of changes in water bodies and cropland areas over the 2013–18 period. Ground survey information was used to assess the pixel-based accuracy of the Landsat-derived data. The areas served by these tanks were identified on the basis of training data and Random Forest algorithms using Google Earth Engine. Our spatial analysis revealed a substantial increase in cropped area under irrigation and expansion of water bodies over the study period. We observed a 20% increase in total tank area in 2017–18 and total cropland and irrigated area expansion of the order of 0.6M ha and 0.2M ha, respectively. A comparison of ground survey data and four LULC classes derived from Landsat temporal imagery showed an overall accuracy of 87%, significantly correlated with national agriculture statistics. Periodic monitoring based on remote sensing has proved to be an effective method of capturing LULC changes resulting from the Mission Kakatiya interventions. Higher-resolution satellite data can further improve the accuracy of estimates

    Influence of Resolution in Irrigated Area Mapping and Area Estimation

    Get PDF
    The overarching goal of this paper was to determine how irrigated areas change with resolution (or scale) of imagery. Specific objectives investigated were to (a) map irrigated areas using four distinct spatial resolutions (or scales), (b) determine how irrigated areas change with resolutions, and (c) establish the causes of differences in resolution-based irrigated areas. The study was conducted in the very large Krishna River basin (India), which has a high degree of formal contiguous, and informal fragmented irrigated areas. The irrigated areas were mapped using satellite sensor data at four distinct resolutions: (a) NOAA AVHRR Pathfinder 10,000 m, (b) Terra MODIS 500 m, (c) Terra MODIS 250 m, and (d) Landsat ETM+ 30 m. The proportion of irrigated areas relative to Landsat 30 m derived irrigated areas (9.36 million hectares for the Krishna basin) were (a) 95 percent using MODIS 250 m, (b) 93 percent using MODIS 500 m, and (c) 86 percent using AVHRR 10,000 m. In this study, it was found that the precise location of the irrigated areas were better established using finer spatial resolution data. A strong relationship (R2 = 0.74 to 0.95) was observed between irrigated areas determined using various resolutions. This study proved the hypotheses that “the finer the spatial resolution of the sensor used, greater was the irrigated area derived,” since at finer spatial resolutions, fragmented areas are detected better. Accuracies and errors were established consistently for three classes (surface water irrigated, ground water/conjunctive use irrigated, and nonirrigated) across the four resolutions mentioned above. The results showed that the Landsat data provided significantly higher overall accuracies (84 percent) when compared to MODIS 500 m (77 percent), MODIS 250 m (79 percent), and AVHRR 10,000 m (63 percent)

    Sub-pixel Area Calculation Methods for Estimating Irrigated Areas

    Get PDF
    The goal of this paper was to develop and demonstrate practical methods forcomputing sub-pixel areas (SPAs) from coarse-resolution satellite sensor data. Themethods were tested and verified using: (a) global irrigated area map (GIAM) at 10-kmresolution based, primarily, on AVHRR data, and (b) irrigated area map for India at 500-mbased, primarily, on MODIS data. The sub-pixel irrigated areas (SPIAs) from coarse-resolution satellite sensor data were estimated by multiplying the full pixel irrigated areas(FPIAs) with irrigated area fractions (IAFs). Three methods were presented for IAFcomputation: (a) Google Earth Estimate (IAF-GEE); (b) High resolution imagery (IAF-HRI); and (c) Sub-pixel de-composition technique (IAF-SPDT). The IAF-GEE involvedthe use of “zoom-in-views” of sub-meter to 4-meter very high resolution imagery (VHRI)from Google Earth and helped determine total area available for irrigation (TAAI) or netirrigated areas that does not consider intensity or seasonality of irrigation. The IAF-HRI isa well known method that uses finer-resolution data to determine SPAs of the coarser-resolution imagery. The IAF-SPDT is a unique and innovative method wherein SPAs aredetermined based on the precise location of every pixel of a class in 2-dimensionalbrightness-greenness-wetness (BGW) feature-space plot of red band versus near-infraredband spectral reflectivity. The SPIAs computed using IAF-SPDT for the GIAM was within2 % of the SPIA computed using well known IAF-HRI. Further the fractions from the 2 methods were significantly correlated. The IAF-HRI and IAF-SPDT help to determine annualized or gross irrigated areas (AIA) that does consider intensity or seasonality (e.g., sum of areas from season 1, season 2, and continuous year-round crops). The national census based irrigated areas for the top 40 irrigated nations (which covers about 90% of global irrigation) was significantly better related (and had lesser uncertainties and errors) when compared to SPIAs than FPIAs derived using 10-km and 500-m data. The SPIAs were closer to actual areas whereas FPIAs grossly over-estimate areas. The research clearly demonstrated the value and the importance of sub-pixel areas as opposed to full pixel areas and presented 3 innovative methods for computing the same

    Monitoring of Spatiotemporal Dynamics of Rabi Rice Fallows in South Asia Using Remote Sensing

    Get PDF
    Cereals and grain legumes are the most important part of human diet and nutrition. The expansion of grain legumes with improved productivity to cater the growing population’s nutritional security is of prime importance and need of the hour. Rice fallows are best niche areas with residual moisture to grow short-duration legumes, thereby achieving intensification. Identifying suitable areas for grain legumes and cereal grains is important in this region. In this context, the goal of this study was to map fallow lands followed by rainy season ( kharif ) rice cultivation or post-rainy ( rabi ) fallows in rice-growing environments between 2005 and 2015 using temporal moderate-resolution imaging spectroradiometer (MODIS) data applying spectral matching techniques. This study was conducted in South Asia where different rice ecosystems exist. MODIS 16 day normalized difference vegetation index (NDVI) at 250 m spatial resolution and season-wise-intensive ground survey data were used to map rice systems and the fallows thereafter ( rabi fallows) in South Asia. The rice maps were validated with independent ground survey data and compared with available subnational-level statistics. Overall accuracy and kappa coefficient estimated for rice classes were 81.5% and 0.79%, respectively, with ground survey data. The derived physical rice area and irrigated areas were highly correlated with the subnational statistics with R ^ 2 values of 94% at the district level for the years 2005–2006 and 2015–2016. Results clearly show that rice fallow areas increased from 2005 to 2015. The results show spatial distribution of rice fallows in South Asia, which are identified as target domains for sustainable intensification of short-duration grain legumes, fixing the soil nitrogen and increasing incomes of small-holder farmers

    Water productivity mapping using remote sensing data of various resolutions to support more crop per drop

    No full text
    The overarching goal of this research was to map crop water productivity using satellite sensor data at various spectral, spatial, radiometric, and temporal resolutions involving: (a) Moderate Resolution Imaging Spectroradiometer (MODIS) 500m, (b) MODIS 250m, (c) Landsat enhanced thematic mapper plus (ETM+) 60m thermal, (d) Indian Remote Sensing Satellite (IRS) 23.5 m, and (e) Quickbird 2.44 m data. The spectro-biophysical models were developed using IRS and Quickbird satellite data for wet biomass, dry biomass, leaf area index, and grain yield for 5 crops: (a) cotton, (b) maize, (c) winter wheat, (d) rice, and (e) alfalfa in the Sry Darya basin, Central Asia. Crop-specific productivity maps were developed by applying the best spectro-biophysical models for the respective delineated crop types. Water use maps were produced using simplified surface energy balance (SSEB) model by multiplying evaporative fraction derived from Landsat ETM+ thermal data by potential ET. The water productivity (WP) maps were then derived by dividing the crop productivity maps by water use maps. The results of cotton crop, an overwhelmingly predominant crop in Central Asian Study area, showed that about 55% area had low WP of 0.4 kg/m3. The trends were similar for other crops. These results indicated that there is highly significant scope to increase WP (to grow "more crop per drop") through better water and cropland management practices in the low WP areas, which will substantially enhance food security of the ballooning populations without having to increase: (a) cropland areas, and\or (b) irrigation water allocations

    Water productivity mapping (WPM) using Landsat ETM+ data for the irrigated croplands of the Syrdarya River Basin in Central Asia

    No full text
    The overarching goal of this paper was to espouse methods and protocols for water productivity mapping (WPM) using high spatial resolution Landsat remote sensing data. In a world where land and water for agriculture are becoming increasingly scarce, growing "more crop per drop? (increasing water productivity) becomes crucial for food security of future generations. The study used time-series Landsat ETM+ data to produce WPMs of irrigated crops, with emphasis on cotton in the Galaba study area in the Syrdarya river basin of Central Asia. The WPM methods and protocols using remote sensing data consisted of: (1) crop productivity (ton/ha) maps (CPMs) involving crop type classification, crop yield and biophysical modeling, and extrapolating yield models to larger areas using remotely sensed data; (2) crop water use (m3/ha) maps (WUMs) (or actual seasonal evapotranspiration or actual ET) developed through Simplified Surface Energy Balance (SSEB) model; and (3) water productivity (kg/m3) maps (WPMs) produced by dividing raster layers of CPMs by WUMs. The SSEB model calculated WUMs (actual ET) by multiplying the ET fraction by reference ET. The ET fraction was determined using Landsat thermal imagery by selecting the "hot? pixels (zero ET) and "cold? pixels (maximum ET). The grass reference ET was calculated by FAO Penman-Monteith method using meteorological data. The WPMs for the Galaba study area demonstrated a wide variations (0-0.54 kg/m3) in water productivity of cotton fields with overwhelming proportion (87%) of the area having WP less than 0.30 kg/m3, 11% of the area having WP in range of 0.30-0.36 kg/m3, and only 2% of the area with WP greater than 0.36 kg/m3. These results clearly imply that there are opportunities for significant WP increases in overwhelming proportion of the existing croplands. The areas of low WP are spatially pin-pointed and can be used as focus for WP improvements through better land and water management practices

    Monitoring of spatiotemporal dynamics of rabi rice fallows in South asia using remote sensing

    No full text
    Cereals and grain legumes are the most important part of human diet and nutrition. The expansion of grain legumes with improved productivity to cater the growing population’s nutritional security is of prime importance and need of the hour. Rice fallows are best niche areas with residual moisture to grow short-duration legumes, thereby achieving intensification. Identifying suitable areas for grain legumes and cereal grains is important in this region. In this context, the goal of this study was to map fallow lands followed by rainy season ( kharif ) rice cultivation or post-rainy ( rabi ) fallows in rice-growing environments between 2005 and 2015 using temporal moderate-resolution imaging spectroradiometer (MODIS) data applying spectral matching techniques. This study was conducted in South Asia where different rice ecosystems exist. MODIS 16 day normalized difference vegetation index (NDVI) at 250 m spatial resolution and season-wise-intensive ground survey data were used to map rice systems and the fallows thereafter ( rabi fallows) in South Asia. The rice maps were validated with independent ground survey data and compared with available subnational-level statistics. Overall accuracy and kappa coefficient estimated for rice classes were 81.5% and 0.79%, respectively, with ground survey data. The derived physical rice area and irrigated areas were highly correlated with the subnational statistics with R ^ 2 values of 94% at the district level for the years 2005–2006 and 2015–2016. Results clearly show that rice fallow areas increased from 2005 to 2015. The results show spatial distribution of rice fallows in South Asia, which are identified as target domains for sustainable intensification of short-duration grain legumes, fixing the soil nitrogen and increasing incomes of small-holder farmers
    corecore