23 research outputs found

    Breed Recognition and Estimation of Live Weight of Cattle Based on Methods of Machine Learning and Computer Vision

    Full text link
    A method of measuring cattle parameters using neural network methods of image processing was proposed. To this end, several neural network models were used: a convolutional artificial neural network and a multilayer perceptron. The first is used to recognize a cow in a photograph and identify its breed followed by determining its body dimensions using the stereopsis method. The perceptron was used to estimate the cow's weight based on its breed and size information. Mask RCNN (Mask Regions with CNNs) convolutional network was chosen as an artificial neural network. To clarify information on the physical parameters of animals, a 3D camera (Intel RealSense D435i) was used. Images of cows taken from different angles were used to determine the parameters of their bodies using the photogrammetric method. The cow body dimensions were determined by analyzing animal images taken with synchronized cameras from different angles. First, a cow was identified in the photograph and its breed was determined using the Mask RCNN convolutional neural network. Next, the animal parameters were determined using the stereopsis method. The resulting breed and size data were fed to a predictive model to determine the estimated weight of the animal. When modeling, Ayrshire, Holstein, Jersey, Krasnaya Stepnaya breeds were considered as cow breeds to be recognized. The use of a pre-trained network with its subsequent training applying the SGD algorithm and Nvidia GeForce 2080 video card has made it possible to significantly speed up the learning process compared to training in a CPU. The results obtained confirm the effectiveness of the proposed method in solving practical problems
    corecore