52 research outputs found

    On the variational principle for dust shells in General Relativity

    Get PDF
    The variational principle for a thin dust shell in General Relativity is constructed. The principle is compatible with the boundary-value problem of the corresponding Euler-Lagrange equations, and leads to ``natural boundary conditions'' on the shell. These conditions and the gravitational field equations which follow from an initial variational principle, are used for elimination of the gravitational degrees of freedom. The transformation of the variational formula for spherically-symmetric systems leads to two natural variants of the effective action. One of these variants describes the shell from a stationary interior observer's point of view, another from the exterior one. The conditions of isometry of the exterior and interior faces of the shell lead to the momentum and Hamiltonian constraints. The canonical equivalence of the mentioned systems is shown in the extended phase space. Some particular cases are considered.Comment: 25 pages, RevTeX, no figures, revised version, typos corrected, accepted for publication in Journal of Mathematical Physic

    Some peculiarities of motion of neutral and charged test particles in the field of a spherically symmetric charged object in General Relativity

    Full text link
    We propose the method of investigation of radial motions for charged and neutral test particles in the Reissner-Nordstr\"{o}m field by means of mass potential. In this context we analyze special features of interaction of charges and their motions in General Relativity and construct the radial motion classification. For test particles and a central source with charges qq and QQ, respectively, the conditions of attraction (when qQ>0qQ>0) and repulsion (when qQ<0qQ<0) are obtained. The conditions of motionless test particle states with respect to the central source are investigated and, in addition, stability conditions for such static equilibrium states are found. It is shown that stable states are possible only for the bound states of weakly charged particles in the field of a naked singularity. Frequencies of small oscillations of test particles near their equilibrium positions are also found.Comment: 15 pages, 9 figure

    Split structures in general relativity and the Kaluza-Klein theories

    Get PDF
    We construct a general approach to decomposition of the tangent bundle of pseudo-Riemannian manifolds into direct sums of subbundles, and the associated decomposition of geometric objects. An invariant structure {\cal H}^r defined as a set of r projection operators is used to induce decomposition of the geometric objects into those of the corresponding subbundles. We define the main geometric objects characterizing decomposition. Invariant non-holonomic generalizations of the Gauss-Codazzi-Ricci's relations have been obtained. All the known types of decomposition (used in the theory of frames of reference, in the Hamiltonian formulation for gravity, in the Cauchy problem, in the theory of stationary spaces, and so on) follow from the present work as special cases when fixing a basis and dimensions of subbundles, and parameterization of a basis of decomposition. Various methods of decomposition have been applied here for the Unified Multidimensional Kaluza-Klein Theory and for relativistic configurations of a perfect fluid. Discussing an invariant form of the equations of motion we have found the invariant equilibrium conditions and their 3+1 decomposed form. The formulation of the conservation law for the curl has been obtained in the invariant form.Comment: 30 pages, RevTeX, aps.sty, some additions and corrections, new references adde

    Problems with Tunneling of Thin Shells from Black Holes

    Full text link
    It is shown that exp(2Im(pdr))exp(-2 Im(\int p dr)) is not invariant under canonical transformations in general. Specifically for shells tunneling out of black holes, this quantity is not invariant under canonical transformations. It can be interpreted as the transmission coefficient only in the cases in which it is invariant under canonical transformations. Although such cases include alpha decay, they do not include the tunneling of shells from black holes. The simplest extension to this formula which is invariant under canonical transformations is proposed. However it is shown that this gives half the correct temperature for black holes.Comment: 25 pages, 3 figures; v4: Made changes for publicatio

    Wave patterns generated by a supersonic moving body in a binary Bose-Einstein condensate

    Get PDF
    Generation of wave structures by a two-dimensional object (laser beam) moving in a two-dimensional two-component Bose-Einstein condensate with a velocity greater than both sound velocities of the mixture is studied by means of analytical methods and systematic simulations of the coupled Gross-Pitaevskii equations. The wave pattern features three regions separated by two Mach cones. Two branches of linear patterns similar to the so-called "ship waves" are located outside the corresponding Mach cones, and oblique dark solitons are found inside the wider cone. An analytical theory is developed for the linear patterns. A particular dark-soliton solution is also obtained, its stability is investigated, and two unstable modes of transverse perturbations are identified. It is shown that, for a sufficiently large flow velocity, this instability has a convective character in the reference frame attached to the moving body, which makes the dark soliton effectively stable. The analytical findings are corroborated by numerical simulations.Comment: 13 pages, 6 figure

    Emission spectra and intrinsic optical bistability in a two-level medium

    Full text link
    Scattering of resonant radiation in a dense two-level medium is studied theoretically with account for local field effects and renormalization of the resonance frequency. Intrinsic optical bistability is viewed as switching between different spectral patterns of fluorescent light controlled by the incident field strength. Response spectra are calculated analytically for the entire hysteresis loop of atomic excitation. The equations to describe the non-linear interaction of an atomic ensemble with light are derived from the Bogolubov-Born-Green-Kirkwood-Yvon hierarchy for reduced single particle density matrices of atoms and quantized field modes and their correlation operators. The spectral power of scattered light with separated coherent and incoherent constituents is obtained straightforwardly within the hierarchy. The formula obtained for emission spectra can be used to distinguish between possible mechanisms suggested to produce intrinsic bistability.Comment: 18 pages, 5 figure

    Nonlinear diffraction of light beams propagating in photorefractive media with embedded reflecting wire

    Get PDF
    The theory of nonlinear diffraction of intensive light beams propagating through photorefractive media is developed. Diffraction occurs on a reflecting wire embedded in the nonlinear medium at relatively small angle with respect to the direction of the beam propagation. It is shown that this process is analogous to the generation of waves by a flow of a superfluid past an obstacle. The ``equation of state'' of such a superfluid is determined by the nonlinear properties of the medium. On the basis of this hydrodynamic analogy, the notion of the ``Mach number'' is introduced where the transverse component of the wave vector plays the role of the fluid velocity. It is found that the Mach cone separates two regions of the diffraction pattern: inside the Mach cone oblique dark solitons are generated and outside the Mach cone the region of ``ship waves'' is situated. Analytical theory of ``ship waves'' is developed and two-dimensional dark soliton solutions of the equation describing the beam propagation are found. Stability of dark solitons with respect to their decay into vortices is studied and it is shown that they are stable for large enough values of the Mach number.Comment: 18 page

    Dark solitons in atomic Bose-Einstein condensates: from theory to experiments

    Full text link
    This review paper presents an overview of the theoretical and experimental progress on the study of matter-wave dark solitons in atomic Bose-Einstein condensates. Upon introducing the general framework, we discuss the statics and dynamics of single and multiple matter-wave dark solitons in the quasi one-dimensional setting, in higher-dimensional settings, as well as in the dimensionality crossover regime. Special attention is paid to the connection between theoretical results, obtained by various analytical approaches, and relevant experimental observations.Comment: 82 pages, 13 figures. To appear in J. Phys. A: Math. Theor
    corecore