113 research outputs found

    The Ternary System Cu2HIO6 ⋅ 2H2O-H5IO6-H2O at 303 K

    Get PDF
    Copper hexaoxoiodates 4CuO ⋅ I2O7 ⋅ 5H2O, 3CuO ⋅ I2O7 ⋅ 3H2O and 3CuO ⋅ 2I2O7 ⋅ 7H2O have been isolated from the ternary system Cu2HIO6 ⋅ 2H2O-H5IO6-H2O at 303 K and studied by chemical, thermal X-ray diffraction and infrared spectroscopic methods. Some of the intermediates obtained on isothermal heating of the parent compounds have been characterised

    Fluctuations of water near extended hydrophobic and hydrophilic surfaces

    Full text link
    We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. To obtain our results, we introduce a biased sampling of coarse-grained densities, which in turn biases the actual solvent density. The technique is easily combined with molecular dynamics integration algorithms. Our principal result is that the probability for density fluctuations of water near a hydrophobic surface, with or without surface-water attractions, is akin to density fluctuations at the water-vapor interface. Specifically, the probability of density depletion near the surface is significantly larger than that in bulk. In contrast, we find that the statistics of water density fluctuations near a model hydrophilic surface are similar to that in the bulk

    Surface modification of starch based blends using potassium permanganate-nitric acid system and its effect on the adherence and proliferation of osteoblastic-like cells

    Get PDF
    The surface modification of three starch based polymeric biomaterials, using a KMnO4/NHO3 oxidizing system, and the effect of that modification on the osteoblastic cell adhesion has been investigated. The rationale of this work is as follows—starch based polymers have been proposed for use as tissue engineering scaffolds in several publications. It is known that in biodegradable systems it is quite difficult to have both cell adhesion and proliferation. Starch based polymers have shown to perform better than poly-lactic acid based materials but there is still room for improvement. This particular work is aimed at enhancing cell adhesion and proliferation on the surface of several starch based polymer blends that are being proposed as tissue engineering scaffolds. The surface of the polymeric biomaterials was chemically modified using a KMnO4/HNO3 system. This treatment resulted in more hydrophilic surfaces, which was confirmed by contact angle measurements. The effect of the treatment on the bioactivity of the surface modified biomaterials was also studied. The bioactivity tests, performed in simulated body fluid after biomimetic coating, showed that a dense film of calcium phosphate was formed after 30 days. Finally, human osteoblast-like cells were cultured on unmodified (control) and modified materials in order to observe the effect of the presence of higher numbers of polar groups on the adhesion and proliferation of those cells. Two of the modified polymers presented changes in the adhesion behavior and a significant increase in the proliferation rate kinetics when compared to the unmodified controls.FCT (Portugal) for providing the postdoctoral grant (BPD/8491/2002)

    Comparison of phase structures and surface free energy values for the coatings synthesised from linear polyurethanes and from waterborne polyurethane cationomers

    Get PDF
    WAXS, DSC and AFM methods were employed to compare phase structures of the coatings obtained from waterborne polyurethane cationomers which had been synthesised in the reaction of some diisocyanates (MDI, IPDI, TDI and HDI) with polyoxyethylene glycols (M = 600 and 2,000) and butane1,4-diol or N-methyl- or N-butyldiethanolamine and 2,2,3,3-tetrafluoro-1,4-butanediol. The structures were also analysed of the coatings derived from linear polyurethanes which had been synthesised on the basis of similar raw materials. Better rigidity was found for generally amorphous cationomer coats. Changes were discussed in the surface free energy (SFE) values and in their components, as calculated independently with the use of the van Oss–Good and Owens–Wendt methods. Polyurethane coats turned out more hydrophobic as compared to cationomer ones. In both coat types, fluorine incorporated into cationomers contributed to lower SFE values: from 50 down to about 30 mJ/m2

    Disaccharide topology induces slow down in local water dynamics

    Get PDF
    Molecular level insight into water structure and structural dynamics near proteins, lipids and nucleic acids is critical to the quantitative understanding of many biophysical processes. Un- fortunately, understanding hydration and hydration dynamics around such large molecules is challenging because of the necessity of deconvoluting the effects of topography and chemical heterogeneity. Here we study, via classical all atom simulation, water structure and structural dynamics around two biologically relevant solutes large enough to have significant chemical and topological heterogeneity but small enough to be computationally tractable: the disaccharides Kojibiose and Trehalose. We find both molecules to be strongly amphiphilic (as quantified from normalized local density fluctuations) and to induce nonuniform local slowdown in water translational and rotational motion. Detailed analysis of the rotational slowdown shows that while the rotational mechanism is similar to that previously identified in other aqueous systems by Laage, Hynes and coworkers, two novel characteristics are observed: broadening of the transition state during hydrogen bond exchange (water rotation) and a subpopulation of water for which rotation is slowed because of hindered access of the new accepting water molecule to the transition state. Both of these characteristics are expected to be generic features of water rotation around larger biomolecules and, taken together, emphasize the difficulty in transferring insight into water rotation around small molecules to much larger amphiphilic solutes.This work is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM)” which is financially supported by the “Nederlandse organisatie voor Wetenschap- pelijk Onderzoek (NWO)”. Further financial support was provided by a Marie Curie Incoming International Fellowship (RKC). We gratefully acknowledge SARA, the Dutch center for high- performance computing, for computational time and Huib Bakker and Daan Frenkel for useful critical reviews on an earlier version of this work. We thank two anonymous reviewers for their excellent work, especially for bringing to our attention calculations done on the transition state geometry of dimers and the overstructuring of the O-O radial distribution function of SPC/E water

    Crowding Alone Cannot Account for Cosolute Effect on Amyloid Aggregation

    Get PDF
    Amyloid fiber formation is a specific form of protein aggregation, often resulting from the misfolding of native proteins. Aimed at modeling the crowded environment of the cell, recent experiments showed a reduction in fibrillation halftimes for amyloid-forming peptides in the presence of cosolutes that are preferentially excluded from proteins and peptides. The effect of excluded cosolutes has previously been attributed to the large volume excluded by such inert cellular solutes, sometimes termed “macromolecular crowding”. Here, we studied a model peptide that can fold to a stable monomeric β-hairpin conformation, but under certain solution conditions aggregates in the form of amyloid fibrils. Using Circular Dichroism spectroscopy (CD), we found that, in the presence of polyols and polyethylene glycols acting as excluded cosolutes, the monomeric β-hairpin conformation was stabilized with respect to the unfolded state. Stabilization free energy was linear with cosolute concentration, and grew with molecular volume, as would also be predicted by crowding models. After initiating the aggregation process with a pH jump, fibrillation in the presence and absence of cosolutes was followed by ThT fluorescence, transmission electron microscopy, and CD spectroscopy. Polyols (glycerol and sorbitol) increased the lag time for fibril formation and elevated the amount of aggregated peptide at equilibrium, in a cosolute size and concentration dependent manner. However, fibrillation rates remained almost unaffected by a wide range of molecular weights of soluble polyethylene glycols. Our results highlight the importance of other forces beyond the excluded volume interactions responsible for crowding that may contribute to the cosolute effects acting on amyloid formation

    Nanocomposites: synthesis, structure, properties and new application opportunities

    Full text link
    corecore