56 research outputs found

    Resonant inelastic x-ray scattering probes the electron-phonon coupling in the spin-liquid kappa-(BEDT-TTF)2Cu2(CN)3

    Full text link
    Resonant inelastic x-ray scattering at the N K edge reveals clearly resolved harmonics of the anion plane vibrations in the kappa-(BEDT-TTF)2Cu2(CN)3 spin-liquid insulator. Tuning the incoming light energy at the K edge of two distinct N sites permits to excite different sets of phonon modes. Cyanide CN stretching mode is selected at the edge of the ordered N sites which are more strongly connected to the BEDT-TTF molecules, while positionally disordered N sites show multi-mode excitation. Combining measurements with calculations on an anion plane cluster permits to estimate the sitedependent electron-phonon coupling of the modes related to nitrogen excitation

    Magnetic and relaxation properties of vanadium(iv) complexes: an integrated H-1 relaxometric, EPR and computational study

    Get PDF
    We report a detailed study of the magnetic and relaxation properties of a series of oxovanadium(IV) complexes comprising the aqua ion [VO(H2O)5]2+ and [VO(ox)2]2- (ox = oxalate), [VO(nta)]- (nta = nitrilotriacetate), [VO(dtpa)] 3- (dtpa = diethylenetriaminepentaacetate) and [VO(acac)2] (acac = acetylacetonato) in solution. The complexes were characterized using continuous wave (X-band) and pulsed (Q-band) EPR measurements and 1H nuclear magnetic relaxation dispersion (NMRD) studies in the 0.01-120 MHz 1H Larmor frequency range. The 51V A-tensor parameters obtained from the analysis of EPR spectra are in good agreement with those obtained using theoretical calculations at the DFT and coupled-cluster levels (DLPNO-CCSD), while g-tensors were obtained with CASSCF/NEVPT2 calculations. EPR measurements reveal significant differences in the electronic Te1 and Te m relaxation times, with [VO(acac)2] showing a markedly different behaviour due to the trans coordination geometry. The NMRD profiles measured at different temperatures have contributions from both the outer- and inner-sphere mechanisms, with the latter showing contributions from the dipolar and scalar mechanisms. The rotational correlation times ( tR) obtained from the fitting of NMRD and EPR data are in good mutual agreement. The scalar mechanism depends on the hyperfine coupling constants of the coordinated water molecule Haiso, which were obtained from the fitting of the NMRD profiles and DFT calculations. Finally, the analysis of the data provided information on the exchange rate of coordinated water molecules, which display mean residence times of similar to 7-17 mu s at 298 K

    Charged molecular silica trigger in vitro NETosis in human granulocytes via both oxidative and autophagic pathways

    No full text
    Neutrophils play a key role in immunity and are known to respond to exogenous threats by releasing neutrophil extracellular traps (NETs) through NETosis, a process involving the release of neutrophils nuclear DNA decorated with proteins into the extracellular space. In this study, attention has been focused on the ability of differently charged molecular systems polyhedral oligomeric silsesquioxanes (POSS) to induce NETosis

    Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents

    No full text
    A class of heterogeneous catalysts based on commercial bentonite from natural origin, containing at least 80 wt% of montmorillonite clay, was designed to transform selectively and under mild conditions toxic organosulfur and organophosphorus chemical warfare agents into non-noxious products with a reduced impact on health and environment. The bentonite from the natural origin was modified by introducing iron species and acid sites in the interlayer space, aiming to obtain a sorbent with strong catalytic oxidising and hydrolytic properties. The catalytic performance of these materials was evaluated in the oxidative abatement of (2-chloroethyl)ethyl sulfide (CEES), a simulant of sulfur mustard, in the presence of aqueous hydrogen peroxide as an oxidant. A new decontamination formulation was, moreover, proposed and obtained by mixing sodium perborate, as a solid oxidant, to iron-bentonite catalysts. Solid-phase decontamination tests, performed on a cotton textile support contaminated with organosulfide and organophosphonate simulant agents revealed the good activity of the solid formulation, especially in the in situ detoxification of blistering agents. Tests carried out on the real blistering warfare agent, sulfur mustard (HD agent), showed that, thanks to the co-presence of the iron-based clay together with the solid oxidant component, a good decontamination of the test surface from the real warfare agent could be achieved (80% contaminant degradation, under ambient conditions, in 24 h
    corecore