413 research outputs found
Recommended from our members
Beam Energy and Centrality Dependence of Direct-Photon Emission from Ultrarelativistic Heavy-Ion Collisions.
The PHENIX collaboration presents first measurements of low-momentum (0.41  GeV/c) direct-photon yield dN_{γ}^{dir}/dη is a smooth function of dN_{ch}/dη and can be well described as proportional to (dN_{ch}/dη)^{α} with α≈1.25. This scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and the Large Hadron Collider, for centrality selected samples, as well as for different A+A collision systems. At a given beam energy, the scaling also holds for high p_{T} (>5  GeV/c), but when results from different collision energies are compared, an additional sqrt[s_{NN}]-dependent multiplicative factor is needed to describe the integrated-direct-photon yield
Recommended from our members
Production of π0 and η mesons in Cu+Au collisions at sNN =200 GeV
Production of π0 and η mesons has been measured at midrapidity in Cu+Au collisions at sNN=200GeV. Measurements were performed in π0(η)→γγ decay channel in the 1(2)-20GeV/c transverse momentum range. A strong suppression is observed for π0 and η meson production at high transverse momentum in central Cu+Au collisions relative to the p+p results scaled by the number of nucleon-nucleon collisions. In central collisions the suppression is similar to Au+Au with comparable nuclear overlap. The η/π0 ratio measured as a function of transverse momentum is consistent with mT-scaling parametrization down to pT=2GeV/c, its asymptotic value is constant and consistent with Au+Au and p+p and does not show any significant dependence on collision centrality. Similar results were obtained in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions as well as in e+e- collisions in a range of collision energies sNN=3-1800 GeV. This suggests that the quark-gluon-plasma medium produced in Cu+Cu collisions either does not affect the jet fragmentation into light mesons or it affects the π0 and η the same way
Recommended from our members
Nonperturbative transverse-momentum-dependent effects in dihadron and direct photon-hadron angular correlations in p+p collisions at s =200 GeV
Dihadron and isolated direct photon-hadron angular correlations are measured in p+p collisions at s=200 GeV. The correlations are sensitive to nonperturbative initial-state and final-state transverse momenta kT and jT in the azimuthal nearly back-to-back region Δφ∼π. To have sensitivity to small transverse momentum scales, nonperturbative momentum widths of pout, the out-of-plane transverse-momentum component perpendicular to the trigger particle, are measured. In this region, the evolution of pout can be studied when several different hard scales are measured. These widths are used to investigate possible effects from transverse-momentum-dependent factorization breaking. When accounting for the longitudinal-momentum fraction of the away-side hadron with respect to the near-side trigger particle, the widths are found to increase with the hard scale; this is qualitatively similar to the observed behavior in Drell-Yan and semi-inclusive deep-inelastic scattering interactions, where factorization is predicted to hold. The momentum widths are also studied as a function of center-of-mass energy by comparing to previous measurements at s=510 GeV. The nonperturbative jet widths also appear to increase with s at a similar xT, which is qualitatively consistent to similar measurements in Drell-Yan interactions. Future detailed global comparisons between measurements of processes where transverse-momentum-dependent factorization is predicted to hold and be broken will provide further insight into the role of color in hadronic interactions
Recommended from our members
Nonperturbative-transverse-momentum broadening in dihadron angular correlations in sNN =200 GeV proton-nucleus collisions
The PHENIX collaboration has measured high-pT dihadron correlations in p+p, p+Al, and p+Au collisions at sNN=200 GeV. The correlations arise from inter- and intrajet correlations and thus have sensitivity to nonperturbative effects in both the initial and final states. The distributions of pout, the transverse-momentum component of the associated hadron perpendicular to the trigger hadron, are sensitive to initial- and final-state transverse momenta. These distributions are measured multidifferentially as a function of xE, the longitudinal momentum fraction of the associated hadron with respect to the trigger hadron. The near-side pout widths, sensitive to fragmentation transverse momentum, show no significant broadening between p+Au, p+Al, and p+p. The away-side nonperturbative pout widths are found to be broadened in p+Au when compared to p+p; however, there is no significant broadening in p+Al compared to p+p collisions. The data also suggest that the away-side pout broadening is a function of Ncoll, the number of binary nucleon-nucleon collisions, in the interaction. The potential implications of these results with regard to initial- and final-state transverse-momentum broadening and energy loss of partons in a nucleus, among other nuclear effects, are discussed
Recommended from our members
Pseudorapidity Dependence of Particle Production and Elliptic Flow in Asymmetric Nuclear Collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200  GeV.
Asymmetric nuclear collisions of p+Al, p+Au, d+Au, and ^{3}He+Au at sqrt[s_{NN}]=200  GeV provide an excellent laboratory for understanding particle production, as well as exploring interactions among these particles after their initial creation in the collision. We present measurements of charged hadron production dN_{ch}/dη in all such collision systems over a broad pseudorapidity range and as a function of collision multiplicity. A simple wounded quark model is remarkably successful at describing the full data set. We also measure the elliptic flow v_{2} over a similarly broad pseudorapidity range. These measurements provide key constraints on models of particle emission and their translation into flow
Recommended from our members
Measurements of μμ pairs from open heavy flavor and Drell-Yan in p+p collisions at s =200 GeV
PHENIX reports differential cross sections of μμ pairs from semileptonic heavy-flavor decays and the Drell-Yan production mechanism measured in p+p collisions at s=200 GeV at forward and backward rapidity (1.2<|η|<2.2). The μμ pairs from cc, bb, and Drell-Yan are separated using a template fit to unlike- and like-sign muon pair spectra in mass and pT. The azimuthal opening angle correlation between the muons from cc and bb decays and the pair-pT distributions are compared to distributions generated using pythia and powheg models, which both include next-to-leading order processes. The measured distributions for pairs from cc are consistent with pythia calculations. The cc data present narrower azimuthal correlations and softer pT distributions compared to distributions generated from powheg. The bb data are well described by both models. The extrapolated total cross section for bottom production is 3.75±0.24(stat)±0.500.35(syst)±0.45(global) [μb], which is consistent with previous measurements at the Relativistic Heavy Ion Collider in the same system at the same collision energy and is approximately a factor of 2 higher than the central value calculated with theoretical models. The measured Drell-Yan cross section is in good agreement with next-to-leading-order quantum-chromodynamics calculations
Recommended from our members
Measurement of charm and bottom production from semileptonic hadron decays in p+p collisions at s =200 GeV
Measurements of the differential production of electrons from open-heavy-flavor hadrons with charm- and bottom-quark content in p+p collisions at s=200 GeV are presented. The measurements proceed through displaced-vertex analyses of electron tracks from the semileptonic decay of charm and bottom hadrons using the PHENIX silicon-vertex detector. The relative contribution of electrons from bottom decays to inclusive heavy-flavor-electron production is found to be consistent with fixed-order-plus-next-to-leading-log perturbative-QCD calculations within experimental and theoretical uncertainties. These new measurements in p+p collisions provide a precision baseline for comparable forthcoming measurements in A+A collisions
Recommended from our members
Multiparticle azimuthal correlations for extracting event-by-event elliptic and triangular flow in Au + Au collisions at sNN =200 GeV
We present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at forward rapidity 1<|η|<3 in Au + Au collisions at sNN=200 GeV, as a function of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients v2{2},v2{4},v2{6}, and v2{8}, and triangular flow coefficients v3{2} and v3{4}. Using the small-variance limit, we estimate the mean and variance of the event-by-event v2 distribution from v2{2} and v2{4}. In a complementary analysis, we also use a folding procedure to study the distributions of v2 and v3 directly, extracting both the mean and variance. Implications for initial geometrical fluctuations and their translation into the final-state momentum distributions are discussed
- …