103 research outputs found
Scattering of Be and B and the astrophysical S factor
Measurements of scattering of Be at 87 MeV on a melamine (CNH) target and of B at 95 MeV on C were performed. For Be
the angular range was extended over previous measurements and monitoring of the
intensity of the radioactive beam was improved. The measurements allowed us to
check and improve the optical model potentials used in the incoming and
outgoing channels for the analysis of existing data on the proton transfer
reaction N(Be,B)C. The resultslead to an updated
determination of the asymptotic normalization coefficient for the virtual decay
B Be + . We find a slightly larger value,
fm, for the melamine target. This
implies an astrophysical factor, eVb, for the
solar neutrino generating reaction Be(,)B.Comment: 7 pages, 4 figure
Tests of Transfer Reaction Determinations of Astrophysical S-Factors
The reaction has been used to determine
asymptotic normalization coefficients for transitions to the ground and first
excited states of . The coefficients provide the normalization for
the tails of the overlap functions for and allow us
to calculate the S-factors for at astrophysical
energies. The calculated S-factors are compared to measurements and found to be
in very good agreement. This provides the first test of this indirect method to
determine astrophysical direct capture rates using transfer reactions. In
addition, our results yield S(0) for capture to the ground and first excited
states in , without the uncertainty associated with extrapolation from
higher energies.Comment: 6 pages, 2 figure
Astrophysical S factor for the radiative capture 12N(p,gamma)13O determined from the 14N(12N,13O)13C proton transfer reaction
The cross section of the radiative proton capture reaction on the drip line
nucleus 12N was investigated using the Asymptotic Normalization Coefficient
(ANC) method. We have used the 14N(12N,13O)13C proton transfer reaction at 12
MeV/nucleon to extract the ANC for 13O -> 12N + p and calculate from it the
direct component of the astrophysical S factor of the 12N(p,gamma)13O reaction.
The optical potentials used and the DWBA analysis of the proton transfer
reaction are discussed. For the entrance channel, the optical potential was
inferred from an elastic scattering measurement carried out at the same time
with the transfer measurement. From the transfer, we determined the square of
the ANC, C^2(13Og.s.) = 2.53 +/- 0.30 fm-1, and hence a value of 0.33(4) keVb
was obtained for the direct astrophysical S factor at zero energy. Constructive
interference at low energies between the direct and resonant captures leads to
an enhancement of Stotal(0) = 0.42(5) keVb. The 12N(p,gamma)13O reaction was
investigated in relation to the evolution of hydrogen-rich massive Population
III stars, for the role that it may play in the hot pp-chain nuclear burning
processes, possibly occurring in such objects.Comment: 15 pages, 10 figures, 3 tables submitted to Phys. Rev.
Indirect techniques in nuclear astrophysics. Asymptotic Normalization Coefficient and Trojan Horse
Owing to the presence of the Coulomb barrier at astrophysically relevant
kinetic energies it is very difficult, or sometimes impossible, to measure
astrophysical reaction rates in the laboratory. That is why different indirect
techniques are being used along with direct measurements. Here we address two
important indirect techniques, the asymptotic normalization coefficient (ANC)
and the Trojan Horse (TH) methods. We discuss the application of the ANC
technique for calculation of the astrophysical processes in the presence of
subthreshold bound states, in particular, two different mechanisms are
discussed: direct capture to the subthreshold state and capture to the
low-lying bound states through the subthreshold state, which plays the role of
the subthreshold resonance. The ANC technique can also be used to determine the
interference sign of the resonant and nonresonant (direct) terms of the
reaction amplitude. The TH method is unique indirect technique allowing one to
measure astrophysical rearrangement reactions down to astrophysically relevant
energies. We explain why there is no Coulomb barrier in the sub-process
amplitudes extracted from the TH reaction. The expressions for the TH amplitude
for direct and resonant cases are presented.Comment: Invited talk on the Conference "Nuclear Physics in Astrophysics II",
Debrecen, Hungary, 16-20 May, 200
26Mg target for nuclear astrophysics measurements
Two nuclear reactions of astrophysical interest, 26Mg(3He,d)27Al and 26Mg(d,p)27Mg, were measured for extraction of the Asymptotic Normalization Coefficients. Investigation of the target composition is presented, as well as the effects that showed up during analysis of the in-beam data obtained on CANAM accelerators in the Nuclear Physics Institute of the Czech Academy of Sciences (NPI CAS)
Asymptotic normalization coefficients from the 14C(d,p)15C reaction
The {sup 14}C(n, {gamma}){sup 15}C reaction plays an important role in inhomogeneous big bang models. In Timofeyuk et al.[Phys. Rev. Lett. 96, 162501 (2006)] it was shown that the {sup 14}C(n, {gamma}){sup 15}C radiative capture at astrophysically relevant energies is a peripheral reaction, i.e., the overall normalization of its cross section is determined by the asymptotic normalization coefficient (ANC) for {sup 15}C{yields}{sup 14}C+n. Here we present new measurements of the {sup 14}C(d, p){sup 15}C differential cross sections at deuteron incident energy of 17.06 MeV and the analysis to determine the ANCs for neutron removal from the ground and first excited states of {sup 15}C. The results are compared with previous estimations
Trojan Horse Particle Invariance: An Extensive Study
In the last decades, the Trojan Horse method (THM) has played a crucial role for the measurement of several particle (both neutron and charged one) induced cross sections for reactions of astrophysical interest. To better understand its cornerstones and its applications to physical cases, many tests were performed to verify all its properties and the possible future perspectives. The Trojan Horse nucleus invariance proves the relatively simple approach allowed by the pole approximation and sheds light in the involved reaction mechanisms. Here we shortly review the complete work for the binary 2H(d,p)3H, 6Li(d,α)4He, 6Li(p,α)3He, 7Li(p,α)4He reactions, by using the quasi free reactions after break-ups of different nuclides. Results are compared assuming the 6Li and 3He break-up in the case of the d(d,p)t, 6Li(d,α)4He reactions and considering the 2H and 3He break-up for 6Li(p,α)3He, 7Li(p,α)4He reactions. These results, regardless of the Trojan Horse particle or the break-up scheme, confirms the applicability of the standard description of the THM and suggests the independence of binary indirect cross section on the chosen Trojan Horse nuclei for a whole spectra of different cases. This gives a strong basis for the understanding of the quasi-free mechanism which is the foundation on which the THM lies
The astrophysical S-factor of the direct 18O(p, γ)19F capture by the ANC method
We attempted to determine the astrophysical S-factor of the direct part of the 18 O(p, γ ) 19 F capture by the indirect method of asymptotic normalization coefficients (ANC). We measured the differential cross section of the transfer reaction 18 O( 3 He, d) 19 F at a 3 He energy of 24.6 MeV. The measurement was realized on the cyclotron of the NPI in Řež, Czech Republic, with the gas target consisting of the high purity 18 O (99.9 %). The reaction products were measured by eight ∆E-E telescopes composed from thin and thick silicon surface-barrier detectors. The parameters of the optical model for the input channel were deduced by means of the code ECIS and the analysis of transfer reactions to 12 levels of the 19 F nucleus up to 8.014 MeV was made by the code FRESCO. The deduced ANCs were then used to specify the direct contribution to the 18 O(p, γ ) 19 F capture process and were compared with the mutually different results of two works
- …