29,811 research outputs found
Geometric phases and anholonomy for a class of chaotic classical systems
Berry's phase may be viewed as arising from the parallel transport of a
quantal state around a loop in parameter space. In this Letter, the classical
limit of this transport is obtained for a particular class of chaotic systems.
It is shown that this ``classical parallel transport'' is anholonomic ---
transport around a closed curve in parameter space does not bring a point in
phase space back to itself --- and is intimately related to the Robbins-Berry
classical two-form.Comment: Revtex, 11 pages, no figures
Note on the helicity decomposition of spin and orbital optical currents
In the helicity representation, the Poynting vector (current) for a
monochromatic optical field, when calculated using either the electric or the
magnetic field, separates into right-handed and left-handed contributions, with
no cross-helicity contributions. Cross-helicity terms do appear in the orbital
and spin contributions to the current. But when the electric and magnetic
formulas are averaged ('electric-magnetic democracy'), these terms cancel,
restoring the separation into right-handed and left-handed currents for orbital
and spin separately.Comment: 10 pages, no figure
Statistical Properties of Many Particle Eigenfunctions
Wavefunction correlations and density matrices for few or many particles are
derived from the properties of semiclassical energy Green functions. Universal
features of fixed energy (microcanonical) random wavefunction correlation
functions appear which reflect the emergence of the canonical ensemble as the
number of particles approaches infinity. This arises through a little known
asymptotic limit of Bessel functions. Constraints due to symmetries,
boundaries, and collisions between particles can be included.Comment: 13 pages, 4 figure
Computing Early-time Dynamics in Heavy Ion Collisions: Status, Problems and Prospects
We discuss some recent developments towards a quantitative understanding of
the production and early-time evolution of bulk quark-gluon matter in
ultrarelativistic heavy ion collisions.Comment: 10 pages, Invited Talk, Workshop on "QCD evolution of parton
distributions: from collinear to non-collinear case", Newport News, VA, 8 - 9
Apr 201
Berry phase in a non-isolated system
We investigate the effect of the environment on a Berry phase measurement
involving a spin-half. We model the spin+environment using a biased spin-boson
Hamiltonian with a time-dependent magnetic field. We find that, contrary to
naive expectations, the Berry phase acquired by the spin can be observed, but
only on timescales which are neither too short nor very long. However this
Berry phase is not the same as for the isolated spin-half. It does not have a
simple geometric interpretation in terms of the adiabatic evolution of either
bare spin-states or the dressed spin-resonances that remain once we have traced
out the environment. This result is crucial for proposed Berry phase
measurements in superconducting nanocircuits as dissipation there is known to
be significant.Comment: 4 pages (revTeX4) 2 fig. This version has MAJOR changes to equation
Quantum Spectra of Triangular Billiards on the Sphere
We study the quantal energy spectrum of triangular billiards on a spherical
surface. Group theory yields analytical results for tiling billiards while the
generic case is treated numerically. We find that the statistical properties of
the spectra do not follow the standard random matrix results and their peculiar
behaviour can be related to the corresponding classical phase space structure.Comment: 18 pages, 5 eps figure
Vector Potential and Berry phase-induced Force
We present a general theoretical framework for the exact treatment of a
hybrid system that is composed of a quantum subsystem and a classical
subsystem. When the quantum subsystem is dynamically fast and the classical
subsystem is slow, a vector potential is generated with a simple canonical
transformation. This vector potential, on one hand, gives rise to the familiar
Berry phase in the fast quantum dynamics; on the other hand, it yields a
Lorentz-like force in the slow classical dynamics. In this way, the pure phase
(Berry phase) of a wavefunction is linked to a physical force.Comment: 4 pages, 1 figur
Subwavelength fractional Talbot effect in layered heterostructures of composite metamaterials
We demonstrate that under certain conditions, fractional Talbot revivals can
occur in heterostructures of composite metamaterials, such as multilayer
positive and negative index media, metallodielectric stacks, and
one-dimensional dielectric photonic crystals. Most importantly, without using
the paraxial approximation we obtain Talbot images for the feature sizes of
transverse patterns smaller than the illumination wavelength. A general
expression for the Talbot distance in such structures is derived, and the
conditions favorable for observing Talbot effects in layered heterostructures
is discussed.Comment: To be published in Phys. Rev.
Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions
Eigenvalues and eigenfunctions of Mathieu's equation are found in the short
wavelength limit using a uniform approximation (method of comparison with a
`known' equation having the same classical turning point structure) applied in
Fourier space. The uniform approximation used here relies upon the fact that by
passing into Fourier space the Mathieu equation can be mapped onto the simpler
problem of a double well potential. The resulting eigenfunctions (Bloch waves),
which are uniformly valid for all angles, are then used to describe the
semiclassical scattering of waves by potentials varying sinusoidally in one
direction. In such situations, for instance in the diffraction of atoms by
gratings made of light, it is common to make the Raman-Nath approximation which
ignores the motion of the atoms inside the grating. When using the
eigenfunctions no such approximation is made so that the dynamical diffraction
regime (long interaction time) can be explored.Comment: 36 pages, 16 figures. This updated version includes important
references to existing work on uniform approximations, such as Olver's method
applied to the modified Mathieu equation. It is emphasised that the paper
presented here pertains to Fourier space uniform approximation
Fractals and Scars on a Compact Octagon
A finite universe naturally supports chaotic classical motion. An ordered
fractal emerges from the chaotic dynamics which we characterize in full for a
compact 2-dimensional octagon. In the classical to quantum transition, the
underlying fractal can persist in the form of scars, ridges of enhanced
amplitude in the semiclassical wave function. Although the scarring is weak on
the octagon, we suggest possible subtle implications of fractals and scars in a
finite universe.Comment: 6 pages, 3 figs, LaTeX fil
- …
