90 research outputs found

    Poisson-Nernst-Planck Systems for Narrow Tubular-like Membrane Channels

    Full text link
    We study global dynamics of the Poisson-Nernst-Planck (PNP) system for flows of two types of ions through a narrow tubular-like membrane channel. As the radius of the cross-section of the three-dimensional tubular-like membrane channel approaches zero, a one-dimensional limiting PNP system is derived. This one-dimensional limiting system differs from previous studied one-dimensional PNP systems in that it encodes the defining geometry of the three-dimensional membrane channel. To justify this limiting process, we show that the global attractors of the three-dimensional PNP systems are upper semi-continuous to that of the limiting PNP system. We then examine the dynamics of the one-dimensional limiting PNP system. For large Debye number, the steady-state of the one-dimensional limiting PNP system is completed analyzed using the geometric singular perturbation theory. For a special case, an entropy-type Lyapunov functional is constructed to show the global, asymptotic stability of the steady-state

    A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell

    Get PDF
    We investigate how the choice of either no-slip or stress-free boundary conditions affects numerical models of rapidly rotating flow in Earth's core by computing solutions of the weakly-viscous magnetostrophic equations within a spherical shell, driven by a prescribed body force. For non-axisymmetric solutions, we show that models with either choice of boundary condition have thin boundary layers of depth E^(1/2), where E is the Ekman number, and a free-stream flow that converges to the formally inviscid solution. At Earth-like values of viscosity, the boundary layer thickness is approximately 1m, for either choice of condition. In contrast, the axisymmetric flows depend crucially on the choice of boundary condition, in both their structure and magnitude (either E^(-1/2) or E^(-1)). These very large zonal flows arise from requiring viscosity to balance residual axisymmetric torques. We demonstrate that switching the mechanical boundary conditions can cause a distinct change of structure of the flow, including a sign-change close to the equator, even at asymptotically low viscosity. Thus implementation of stress-free boundary conditions, compared with no-slip conditions, may yield qualitatively different dynamics in weakly-viscous magnetostrophic models of Earth's core. We further show that convergence of the free-stream flow to its asymptotic structure requires E ≤10^(-5)

    On the optimum step response of band-limited systems

    No full text

    A unified linear theory of homogeneous and stratified rotating fluids

    No full text

    On the steady motions produced by a stable stratification in a rapidly rotating fluid

    No full text

    Linear theory of rotating stratified fluid motions

    No full text
    • …
    corecore