2,093 research outputs found

    Temperature operating mode of the CuBr+Ne+H2(HBr)-laser at change of pumping

    Get PDF
    The analysis of a temperature mode of the laser on copper bromide vapour using active additives of hydrogen (bromhydrogen) at change of pumping parameters has been carried out. It is shown that introduction of the optimal additive increases the discharge tube wall temperature from 620 up to 720 Β°Π‘. The increase of wall temperature 50...60 Β°Π‘ more can occur at change of buffer gas pressure from 3,3 to 13,3 kPa, as well as at increase working capacity twice. It is stated that introduction of the additive raises pressure of working substance vapours in the active media of the laser of average diameter 6,7 Pa more due to interaction of bromine, bromhydrogen with copper atoms settled on the tube wall. The peculiarities of laser thermal mode at high frequencies of pulse sequences (up to 100 kHz) have been considered

    Solid-state active media of tunable organic- compound lasers pumped with a laser. II. A copper vapor laser

    Get PDF
    ΠžΡ†ΠΈΡ„Ρ€ΠΎΠ²Π°Π½ΠΎ Π² НБ Π’Π“

    Uncertainty relations in curved spaces

    Full text link
    Uncertainty relations for particle motion in curved spaces are discussed. The relations are shown to be topologically invariant. New coordinate system on a sphere appropriate to the problem is proposed. The case of a sphere is considered in details. The investigation can be of interest for string and brane theory, solid state physics (quantum wires) and quantum optics.Comment: published version; phase space structure discussion adde

    Hybridized electronic states in dense intermetallics as studied by ESR

    Get PDF
    We review electron spin resonance (ESR) experiments in several concentrated Yb-, Ce-, and Eubased intermetallic systems. Recent theoretical studies attribute well resolved ESR signals with hybridization effects between 4f and conduction electrons (CE) in the presence of ferromagnetic (FM) fluctuations. We believe that the ESR absorption is caused here by a novel type of ESR excitations - hybridized electronic states, which are created in some strongly correlated electronic systems due to hybridization between the 4f-orbitals and the wavefunctions of the CE of the outer d, s, and p shells in conjunction with FM RKKY interaction. Β© (2011) Trans Tech Publications

    Operation of a capacitive pumped cubr laser in a reduced energy deposition mode

    Get PDF
    The results of the operation of a capacitive pumped CuBr laser in a reduced energy deposition mode are presented. A high radiation-pulse repetition rate of 100 kHz in the active medium of copper bromide vapors was obtained. The results of OrCAD simulation of the high-frequency metal vapor active media pumping source with capacitive pumping are presented

    Higher Partial Waves in p+p->p+p+eta near Threshold

    Full text link
    Exclusive measurements of the production of eta mesons in the p+p->p+p+eta reaction have been carried out at excess energies of 16 and 37 MeV above threshold. The deviations from phase space are dominated by the proton-proton final state interaction and this influences particularly the energy distribution of the eta meson. However, evidence is also presented at the higher energy for the existence of an anisotropy in the angular distributions of the eta meson and also of the final proton-proton pair, probably to be associated with D-waves in this system interfering with the dominant S-wave term. The sign of the eta angular anisotropy suggests that rho-exchange is important for this reaction.Comment: 16 pages, LaTeX2e, 3 EPS Figures, Updated version, Accepted for publication in Phys. Lett.

    Precise measurement of RudsR_{\text{uds}} and RR between 1.84 and 3.72 GeV at the KEDR detector

    Full text link
    The present work continues a series of the KEDR measurements of the RR value that started in 2010 at the VEPP-4M e+eβˆ’e^+e^- collider. By combining new data with our previous results in this energy range we measured the values of RudsR_{\text{uds}} and RR at nine center-of-mass energies between 3.08 and 3.72 GeV. The total accuracy is about or better than 2.6%2.6\% at most of energy points with a systematic uncertainty of about 1.9%1.9\%. Together with the previous precise RR measurement at KEDR in the energy range 1.84-3.05 GeV, it constitutes the most detailed high-precision RR measurement near the charmonium production threshold.Comment: arXiv admin note: text overlap with arXiv:1610.02827 and substantial text overlap with arXiv:1510.0266

    The Quadrupole Magnets for the LHC Injection Transfer Lines

    Get PDF
    Two injection transfer lines, each about 2.8 km long, are being built to transfer protons at 450 GeV from the Super Proton Synchrotron (SPS) to the Large Hadron Collider (LHC). A total of 180 quadrupole magnets are required; they are produced in the framework of the contribution of the Russian Federation to the construction of the LHC. The classical quadrupoles, built from laminated steel cores and copper coils, have a core length of 1.4 m, an inscribed diameter of 32 mm and a strength of 53.5 T/m at a current of 530 A. The total weight of one magnet is 1.1 ton. For obtaining the required field quality at the small inscribed diameter, great care in the stamping of the laminations and the assembly of quadrants is necessary. Special instruments have been developed to measure, with a precision of some mm, the variations of the pole gaps over the full length of the magnet and correlate them to the obtained field distribution. The design has been developed in a collaboration between BINP and CERN. Fabrication and the magnetic measurements are done at BINP and should be finished at the end of the year 2000

    System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions

    Full text link
    We present the first measurements of the pseudorapidity distribution of primary charged particles in Cu+Cu collisions as a function of collision centrality and energy, \sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu and Au+Au results, we find that the total number of produced charged particles and the rough shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants. More detailed studies reveal that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of pseudorapidity occurs for the same Npart/2A value rather than the same Npart value. In other words, it is the collision geometry rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence at RHIC energies.Comment: Submitted to Physical Review Letter
    • …
    corecore