155 research outputs found

    Kelvin-Helmholtz instability of AB interface in superfluid 3He

    Full text link
    The Kelvin-Helmholtz instability is well-known in classical hydrodynamics, where it explains the sudden emergence of interfacial surface waves as a function of the velocity of flow parallel to the interface. It can be carried over to the inviscid two-fluid dynamics of superfluids, to study different types of interfaces and phase boundaries in quantum fluids. We report measurements on the stability of the phase boundary separating the two bulk phases of superfluid 3He in rotating flow, while the boundary is localized with the gradient of the magnetic field to a position perpendicular to the rotation axis. The results demonstrate that the classic stability condition, when modified for the superfluid environment, is obeyed down to 0.4 Tc, if a large fraction of the magnetic polarization of the B-phase is attributed to a parabolic reduction of the interfacial surface tension with increasing magnetic field.Comment: 14 pages, 14 figure

    Transitions in vortex skyrmion structures in superfluid 3^3He-A driven by an analogue of the zero-charge effect

    Full text link
    In quantum electrodynamics, the zero-charge effect originates from the logarithmic dependence of the coupling constant in the action of the electromagnetic field on the ratio of the ultraviolet and infrared energy cutoffs. An analogue of this effect in Weyl superfluid 3^3He-A is the logarithmic divergence of the bending energy of the orbital anisotropy axis at low temperatures, where temperature plays the role of the infrared cutoff and the vector of the orbital anisotropy plays the role of the vector potential of the synthetic electromagnetic field for Weyl fermions. We calculate numerically the spatial distribution of the order parameter in rotating 3^3He-A as a function of temperature. At temperatures close to the superfluid transition, we observe formation of vortex skyrmions known as the double-quantum vortex and the vortex sheet. These structures include alternating circular and hyperbolic merons as a bound pair or a chain, respectively. As temperature lowers towards absolute zero, we find a continuous transition in the vortex structures towards a state where the vorticity is distributed in thin tubes around the circular merons. For the vortex sheet, we present a phase diagram of the transition in the temperature - angular velocity plane and calculations of the nuclear magnetic resonance response.Comment: 14 pages, 10 figure

    Measurement of Turbulence in Superfluid 3He-B

    Full text link
    The experimental investigation of superfluid turbulence in 3He-B is generally not possible with the techniques which have been developed for 4He-II. We describe a new method by which a transient burst of turbulent vortex expansion can be generated in 3He-B. It is based on the injection of a few vortex loops into rotating vortex-free flow. The time-dependent evolution of the quantized vorticity is then monitored with NMR spectroscopy. Using these techniques the transition between regular (i.e. vortex number conserving) and turbulent vortex dynamics can be recorded at T ~ 0.6 Tc and a number of other characteristics of turbulence can be followed down to a temperature of T ~ 0.4 Tc.Comment: 31 pages, 10 figure

    Microkelvin thermometry with Bose-Einstein condensates of magnons and applications to studies of the AB interface in superfluid 3^3He

    Full text link
    Coherent precession of trapped Bose-Einstein condensates of magnons is a sensitive probe for magnetic relaxation processes in superfluid 3He-B down to the lowest achievable temperatures. We use the dependence of the relaxation rate on the density of thermal quasiparticles to implement thermometry in 3He-B at temperatures below 300 μ\muK. Unlike popular vibrating wire or quartz tuning fork based thermometers, magnon condensates allow for contactless temperature measurement and make possible an independent in situ determination of the residual zero-temperature relaxation provided by the radiation damping. We use this magnon-condensate-based thermometry to study the thermal impedance of the interface between A and B phases of superfluid 3He. The magnon condensate is also a sensitive probe of the orbital order-parameter texture. This has allowed us to observe for the first time the non-thermal signature of the annihilation of two AB interfaces.Comment: 26 pages, 7 figures, manuscript prepared for EU Microkelvin Collaboration Workshop 2013. Accepted for publication in Journal of Low Temperature Physic

    Superflow-Stabilized Nonlinear NMR in Rotating 3He-B

    Full text link
    Nonlinear spin precession has been observed in 3He-B in large counterflow of the normal and superfluid fractions. The new precessing state is stabilized at high rf excitation level and displays frequency-locked precession over a large range of frequency shifts, with the magnetization at its equilibrium value. Comparison to analytical and numerical calculation indicates that in this state the orbital angular momentum L of the Cooper pairs is oriented transverse to the external magnetic field in a ``non-Leggett'' configuration with broken spin-orbit coupling. The resonance shift depends on the tipping angle theta of the magnetization as omega - omega_L = (Omega_B^2 / 2 omega_L)(cos(theta) - 1/5). The phase diagram of the precessing modes with arbitrary orientation of L is constructed.Comment: Revtex file, 5 pages, 4 figures, version submitted to Phys. Rev. Let
    • …
    corecore