3,184 research outputs found

    Dynamical Casimir Effect in two-atom cavity QED

    Full text link
    We study analytically and numerically the dynamical Casimir effect in a cavity containing two stationary 2-level atoms that interact with the resonance field mode via the Tavis-Cummings Hamiltonian. We determine the modulation frequencies for which the field and atomic excitations are generated and study the corresponding dynamical behaviors in the absence of damping. It is shown that the two-atom setup allows for monitoring of photon generation without interrupting the growth, and different entangled states can be generated during the process.Comment: 4+ pages, 2 figure

    Approximate analytical results on the cavity dynamical Casimir effect in the presence of a two-level atom

    Full text link
    We study analytically the photon generation from vacuum due to the Dynamical Casimir effect in a cavity with a two-level atom, prepared initially in an arbitrary pure state. Performing small unitary transformations we obtain closed analytical expressions for the probability amplitudes and other important quantities in the resonant/dispersive regimes.Comment: 5 pages, 2 figure

    Smooth quantum-classical transition in photon subtraction and addition processes

    Full text link
    Recently Parigi et al. [Science 317, 1890 (2007)] implemented experimentally the photon subtraction and addition processes from/to a light field in a conditional way, when the required operations were produced successfully only upon the positive outcome of a separate measurement. It was verified that for a low intensity beam (quantum regime) the bosonic annihilation operator does indeed describe a single photon subtraction, while the creation operator describes a photon addition. Nonetheless, the exact formal expressions for these operations do not always reduce to these simple identifications, and in this connection here we deduce the general superoperators for multiple photons subtraction and addition processes and analyze the statistics of the resulting states for classical field states having an arbitrary intensity. We obtain closed analytical expressions and verify that for classical fields with high intensity (classical regime) the operators that describe photon subtraction and addition processes deviate significantly from simply annihilation and creation operators. Complementarily, we analyze in details such a smooth quantum-classical transition as function of beam intensity for both processes.Comment: 7 pages, 5 figures. To appear in Phys. Rev.

    Amplification of Fluctuations in Unstable Systems with Disorder

    Full text link
    We study the early-stage kinetics of thermodynamically unstable systems with quenched disorder. We show analytically that the growth of initial fluctuations is amplified by the presence of disorder. This is confirmed by numerical simulations of morphological phase separation (MPS) in thin liquid films and spinodal decomposition (SD) in binary mixtures. We also discuss the experimental implications of our results.Comment: 15 pages, 4 figure

    Controlling entanglement by direct quantum feedback

    Full text link
    We discuss the generation of entanglement between electronic states of two atoms in a cavity using direct quantum feedback schemes. We compare the effects of different control Hamiltonians and detection processes in the performance of entanglement production and show that the quantum-jump-based feedback proposed by us in Phys. Rev. A {\bf 76} 010301(R) (2007) can protect highly entangled states against decoherence. We provide analytical results that explain the robustness of jump feedback, and also analyse the perspectives of experimental implementation by scrutinising the effects of imperfections and approximations in our model.Comment: 10 pages, 8 figures. To appear in PR

    Microscopic models of quantum jump super-operators

    Full text link
    We discuss the quantum jump operation in an open system, and show that jump super-operators related to a system under measurement can be derived from the interaction of that system with a quantum measurement apparatus. We give two examples for the interaction of a monochromatic electromagnetic field in a cavity (the system) with 2-level atoms and with a harmonic oscillator (representing two different kinds of detectors). We show that derived quantum jump super-operators have `nonlinear' form which depends on assumptions made about the interaction between the system and the detector. A continuous transition to the standard Srinivas--Davies form of the quantum jump super-operatoris shown

    Resonance fluorescence from an artificial atom in squeezed vacuum

    Get PDF
    We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. \textbf{58}, 2539-2542 (1987)], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments

    Reproductive endocrine effects of intranasal administration of norethisterone to adult female rhesus monkeys (Macaca mulatta)

    Get PDF
    Intranasal administration of norethisterone at a daily dose of 9 ÎĽg between Days 5 and 14 of the menstrual cycles blocked ovulation in 10 out of 17 adult female monkeys. Serum concentrations of hormones indicated that ovulation was blocked due to a suppression of the mid-cycle, oestradiol-induced LH surge. Ovarian follicular activity in the treated menstrual cycles was not affected by norethisterone but there was a marked delay in the onset of the mid-cycle oestradiol surge in most of the treated animals. The duration of the menstrual cycle length after the oestradiol peak was significantly reduced in all the treated monkeys, indicative of a shortened luteal phase

    Cavity Dynamical Casimir Effect in the presence of a three-level atom

    Full text link
    We consider the scenario in which a damped three-level atom in the ladder or V configurations is coupled to a single cavity mode whose vacuum state is amplified by dint of the dynamical Casimir effect. We obtain approximate analytical expressions and exact numerical results for the time-dependent probabilities, demonstrating that the presence of the third level modifies the photon statistics and its population can serve as a witness of photon generation from vacuum.Comment: 7 pages, 4 figure

    Coherent control of collective spontaneous emission in an extended atomic ensemble and quantum storage

    Get PDF
    Coherent control of collective spontaneous emission in an extended atomic ensemble resonantly interacting with single-photon wave packets is analyzed. A scheme for coherent manipulation of collective atomic states is developed such that superradiant states of the atomic system can be converted into subradiant ones and vice versa. Possible applications of such a scheme for optical quantum state storage and single-photon wave packet shaping are discussed. It is shown that also in the absence of inhomogeneous broadening of the resonant line, single-photon wave packets with arbitrary pulse shape may be recorded as a subradiant state and reconstructed even although the duration of the wave packets is larger than the superradiant life-time. Specifically the applicability for storing time-bin qubits, which are used in quantum cryptography is analyzed.Comment: 11 pages, 4 figures, submitted to PR
    • …
    corecore