29 research outputs found

    Nucleon polarizabilities in the perturbative chiral quark model

    Full text link
    The nucleon polarizabilities alpha(E) and beta(M) are studied in the context of the perturbative chiral quark model. We demonstrate that meson cloud effects are sufficient to explain the electric polarizability of nucleon. Contributions of excite quark states to the paramagnetic polarizability are dominant and cancel the diamagnetic polarizability arising from the chiral field. The obtained results are compared to data and other theoretical predictions.Comment: 25 pages, 18 figures, 2 table

    Quasi-free Compton Scattering and the Polarizabilities of the Neutron

    Full text link
    Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm ⊘\oslash ×\times 64 cm NaI(Tl) photon detector and the G\"ottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at ΞγLAB=136.2∘\theta^{LAB}_\gamma=136.2^\circ. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction p(Îł,π+n)p(\gamma,\pi^+ n). The "free" proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be α−ÎČ=9.8±3.6(stat)12.1.1(syst)±2.2(model)\alpha-\beta= 9.8\pm 3.6(stat){}^{2.1}_1.1(syst)\pm 2.2(model) in units 10−4fm310^{-4}fm^3. In combination with the polarizability sum α+ÎČ=15.2±0.5\alpha +\beta=15.2\pm 0.5 deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, αn=12.5±1.8(stat)−0.6+1.1±1.1(model)\alpha_n=12.5\pm 1.8(stat){}^{+1.1}_{-0.6}\pm 1.1(model) and ÎČn=2.7∓1.8(stat)−1.1+0.6(syst)∓1.1(model)\beta_n=2.7\mp 1.8(stat){}^{+0.6}_{-1.1}(syst)\mp 1.1(model) are obtained. The backward spin polarizability of the neutron was determined to be ÎłÏ€(n)=(58.6±4.0)×10−4fm4\gamma^{(n)}_\pi=(58.6\pm 4.0)\times 10^{-4}fm^4

    Quasi-free Compton Scattering from the Deuteron and Nucleon Polarizabilities

    Full text link
    Cross sections for quasi-free Compton scattering from the deuteron were measured for incident energies of 236--260 MeV at the laboratory angle -135 degrees. The recoil nucleons were detected in a liquid-scintillator array situated at 20 degrees. The measured differential cross sections were used, with the calculations of Levchuk et al., to determine the polarizabilities of the bound nucleons. For the bound proton, the extracted values were consistent with the accepted value for the free proton. Combining our results for the bound neutron with those from Rose et al., we obtain one-sigma constraints of alpha_n = 7.6-14.0 and beta_n = 1.2-7.6.Comment: 4 pages, 3 figures, accepted in PR

    Measurement of the Electric and Magnetic Polarizabilities of the Proton

    Full text link
    The Compton scattering cross section on the proton has been measured at laboratory angles of 90∘^\circ and 135∘^\circ using tagged photons in the energy range 70--100 MeV and simultaneously using untagged photons in the range 100--148~MeV. With the aid of dispersion relations, these cross sections were used to extract the electric and magnetic polarizabilities, αˉ\bar{\alpha} and ÎČˉ\bar{\beta} respectively, of the proton. We find αˉ+ÎČˉ=(15.0±2.9±1.1±0.4)×10−4 fm3,\bar{\alpha}+\bar{\beta} = ( 15.0 \pm 2.9 \pm 1.1 \pm 0.4 ) \times 10^{-4} \: {\rm fm}^3, in agreement with a model-independent dispersion sum rule, and αˉ−ÎČˉ=(10.8±1.1±1.4±1.0)×10−4 fm3,\bar{\alpha}-\bar{\beta} = ( 10.8 \pm 1.1 \pm 1.4 \pm 1.0 ) \times 10^{-4} \: {\rm fm}^3, where the errors shown are statistical, systematic, and model-dependent, respectively. A comparison with previous experiments is given and global values for the polarizabilities are extracted.Comment: 35 pages, 11 PostScript figures, uses RevTex 3.

    π+\pi^+ and π0\pi^0 Polarizabilities from {ÎłÎłâ†’Ï€Ï€\gamma\gamma\rightarrow\pi\pi} Data on the Base of S-Matrix Approach

    Full text link
    We suggest the most model-independent and simple description of the ÎłÎłâ†’Ï€Ï€\gamma\gamma\rightarrow\pi\pi process near threshold in framework of S-matrix approach. The amplitudes contain the pion polarizabilities and rather restricted information about ππ\pi \pi interaction. Application of these formulae for description of MARK-II \cite{M2} and Crystal Ball \cite{CB} data gives: (α−ÎČ)C=(6.0±1.2)⋅10−42cm3(\alpha-\beta)^{C}=(6.0\pm 1.2)\cdot 10^{-42} {\rm cm}^{3}, (α−ÎČ)N=(−1.4±2.1)⋅10−42cm3(\alpha-\beta)^{N}=(-1.4\pm 2.1)\cdot 10^{-42} cm^3 (in units system e2=4παe^2 = 4 \pi \alpha) at the experimental values of ππ\pi \pi scattering lengths. Both values are compartible with current algebra predictions.Comment: LaTeX, 14 pages plus 6 figures (not included, available upon request) , ISU-IAP.Th93-03, Irkuts

    Cluster Transformation Coefficients for Structure and Dynamics Calculations in n-Particle Systems: Atoms, Nuclei, and Quarks

    Get PDF
    The structure and dynamics of an n-particle system are described with coupled nonlinear Heisenberg's commutator equations where the nonlinear terms are generated by the two-body interaction that excites the reference vacuum via particle-particle and particle-hole excitations. Nonperturbative solutions of the system are obtained with the use of dynamic linearization approximation and cluster transformation coefficients. The dynamic linearization approximation converts the commutator chain into an eigenvalue problem. The cluster coefficients factorize the matrix elements of the (n)-particles or particle-hole systems in terms of the matrix elements of the (n-1)-systems coupled to a particle-particle, particle-hole, and hole-hole boson. Group properties of the particle-particle, particle-hole, and hole-hole permutation groups simplify the calculation of these coefficients. The particle-particle vacuum-excitations generate superconductive diagrams in the dynamics of 3-quarks systems. Applications of the model to fermionic and bosonic systems are discussed.Comment: 13 pages, 5 figures, Wigner Proceedings for Conference Wigner Centenial Pecs, July 8-12, 200

    Neutron polarizabilities investigated by quasi-free Compton scattering from the deuteron

    Full text link
    Measuring Compton scattered photons and recoil neutrons in coincidence, quasi-free Compton scattering by the neutron has been investigated at MAMI (Mainz) at thetaÎłlab=136otheta^{lab}_\gamma=136^o in an energy range from 200 to 400 MeV. From the data a polarizability difference of αn−ÎČn=9.8±3.6(stat)−1.1+2.1(syst)±2.2(model)\alpha_n - \beta_n = 9.8 \pm 3.6(stat)^{+2.1}_{-1.1}(syst)\pm 2.2(model) in units of 10−4fm310^{-4}fm^3 has been determined. In combination with the polarizability sum αn+ÎČn=15.2±0.5\alpha_n+\beta_n= 15.2\pm 0.5 deduced from photo absorption data, the neutron electric and magnetic polarizabilities, αn=12.5±1.8(stat)−0.6+1.1(syst)±1.1(model)\alpha_n=12.5\pm 1.8(stat)^{+1.1}_{-0.6}(syst)\pm 1.1(model) and ÎČn=2.7∓1.8(stat)−1.1+0.6(syst)∓1.1(model)\beta_n = 2.7\mp 1.8(stat)^{+0.6}_{-1.1}(syst)\mp 1.1(model), are obtained

    Sum rules for pion polarizabilities

    No full text
    corecore