24 research outputs found

    Microwave paleointensities indicate a low paleomagnetic dipole moment at the Permo-Triassic boundary

    Get PDF
    © 2016 The AuthorsThe quantity of igneous material comprising the Siberian Traps provides a uniquely excellent opportunity to constrain Earth's paleomagnetic field intensity at the Permo-Triassic boundary. There remains however, a contradiction about the strength of the magnetic field that is exacerbated by the limited number of measurement data. To clarify the geomagnetic field behavior during this time period, for the first time, a microwave paleointensity study has been carried out on the Permo-Triassic flood basalts in order to complement existing datasets obtained using conventional thermal techniques. Samples, which have been dated at ∼250 Ma, of the Permo-Triassic trap basalts from the northern extrusive (Maymecha-Kotuy region) and the southeastern intrusive (areas of the Sytikanskaya and Yubileinaya kimberlite pipes) localities on the Siberian platform are investigated. These units have already demonstrated reliable paleomagnetic directions consistent with the retention of a primary remanence. Furthermore, Scanning Electron Microscope analysis confirms the presence of iron oxides likely of primary origin. Microwave Thellier-type paleointensity experiments (IZZI protocol with partial thermoremanent magnetization checks) are performed on 50 samples from 11 sites, of which, 28 samples from 7 sites provide satisfactory paleointensity data. The samples display corresponding distinct directional components, positive pTRM checks and little or no zig-zagging of the Arai or Zijderveld plot, providing evidence to support that the samples are not influenced by lab-induced alteration or multi-domain behavior. The accepted microwave paleointensity results from this study are combined with thermal Thellier-type results from previously published studies to obtain overall estimates for different regions of the Siberian Traps. The mean geomagnetic field intensity obtained from the samples of the northern part is 13.4 ± 12.7 μT (Maymecha-Kotuy region), whereas from the southeastern part is 17.3 ± 16.5 μT (Sytikanskaya kimberlite pipe) and 48.5 ± 7.3 μT (Yubileinaya kimberlite pipe), suggesting that the regional discrepancy is probably due to the insufficient sampling of geomagnetic secular variation, and thus, multiple localities need to be considered to obtain an accurate paleomagnetic dipole moment for this time period. It demonstrates that the overall mean paleointensity of the Siberian Traps is 19.5 ± 13.0 μT which corresponds to a mean virtual dipole moment of 3.2 ± 1.8 × 1022 Am2. Results indicate that the average magnetic field intensity during Permo-Triassic boundary is significantly lower (by approximately 50%) than the present geomagnetic field intensity, and thus, it implies that the Mesozoic dipole low might extend 50 Myr further back in time than previously recognized

    Microwave paleointensities indicate a low paleomagnetic dipole moment at the Permo-Triassic boundary

    Get PDF
    © 2016 The AuthorsThe quantity of igneous material comprising the Siberian Traps provides a uniquely excellent opportunity to constrain Earth's paleomagnetic field intensity at the Permo-Triassic boundary. There remains however, a contradiction about the strength of the magnetic field that is exacerbated by the limited number of measurement data. To clarify the geomagnetic field behavior during this time period, for the first time, a microwave paleointensity study has been carried out on the Permo-Triassic flood basalts in order to complement existing datasets obtained using conventional thermal techniques. Samples, which have been dated at ∼250 Ma, of the Permo-Triassic trap basalts from the northern extrusive (Maymecha-Kotuy region) and the southeastern intrusive (areas of the Sytikanskaya and Yubileinaya kimberlite pipes) localities on the Siberian platform are investigated. These units have already demonstrated reliable paleomagnetic directions consistent with the retention of a primary remanence. Furthermore, Scanning Electron Microscope analysis confirms the presence of iron oxides likely of primary origin. Microwave Thellier-type paleointensity experiments (IZZI protocol with partial thermoremanent magnetization checks) are performed on 50 samples from 11 sites, of which, 28 samples from 7 sites provide satisfactory paleointensity data. The samples display corresponding distinct directional components, positive pTRM checks and little or no zig-zagging of the Arai or Zijderveld plot, providing evidence to support that the samples are not influenced by lab-induced alteration or multi-domain behavior. The accepted microwave paleointensity results from this study are combined with thermal Thellier-type results from previously published studies to obtain overall estimates for different regions of the Siberian Traps. The mean geomagnetic field intensity obtained from the samples of the northern part is 13.4 ± 12.7 μT (Maymecha-Kotuy region), whereas from the southeastern part is 17.3 ± 16.5 μT (Sytikanskaya kimberlite pipe) and 48.5 ± 7.3 μT (Yubileinaya kimberlite pipe), suggesting that the regional discrepancy is probably due to the insufficient sampling of geomagnetic secular variation, and thus, multiple localities need to be considered to obtain an accurate paleomagnetic dipole moment for this time period. It demonstrates that the overall mean paleointensity of the Siberian Traps is 19.5 ± 13.0 μT which corresponds to a mean virtual dipole moment of 3.2 ± 1.8 × 1022 Am2. Results indicate that the average magnetic field intensity during Permo-Triassic boundary is significantly lower (by approximately 50%) than the present geomagnetic field intensity, and thus, it implies that the Mesozoic dipole low might extend 50 Myr further back in time than previously recognized

    Microwave paleointensities indicate a low paleomagnetic dipole moment at the Permo-Triassic boundary

    No full text
    © 2016 The AuthorsThe quantity of igneous material comprising the Siberian Traps provides a uniquely excellent opportunity to constrain Earth's paleomagnetic field intensity at the Permo-Triassic boundary. There remains however, a contradiction about the strength of the magnetic field that is exacerbated by the limited number of measurement data. To clarify the geomagnetic field behavior during this time period, for the first time, a microwave paleointensity study has been carried out on the Permo-Triassic flood basalts in order to complement existing datasets obtained using conventional thermal techniques. Samples, which have been dated at ∼250 Ma, of the Permo-Triassic trap basalts from the northern extrusive (Maymecha-Kotuy region) and the southeastern intrusive (areas of the Sytikanskaya and Yubileinaya kimberlite pipes) localities on the Siberian platform are investigated. These units have already demonstrated reliable paleomagnetic directions consistent with the retention of a primary remanence. Furthermore, Scanning Electron Microscope analysis confirms the presence of iron oxides likely of primary origin. Microwave Thellier-type paleointensity experiments (IZZI protocol with partial thermoremanent magnetization checks) are performed on 50 samples from 11 sites, of which, 28 samples from 7 sites provide satisfactory paleointensity data. The samples display corresponding distinct directional components, positive pTRM checks and little or no zig-zagging of the Arai or Zijderveld plot, providing evidence to support that the samples are not influenced by lab-induced alteration or multi-domain behavior. The accepted microwave paleointensity results from this study are combined with thermal Thellier-type results from previously published studies to obtain overall estimates for different regions of the Siberian Traps. The mean geomagnetic field intensity obtained from the samples of the northern part is 13.4 ± 12.7 μT (Maymecha-Kotuy region), whereas from the southeastern part is 17.3 ± 16.5 μT (Sytikanskaya kimberlite pipe) and 48.5 ± 7.3 μT (Yubileinaya kimberlite pipe), suggesting that the regional discrepancy is probably due to the insufficient sampling of geomagnetic secular variation, and thus, multiple localities need to be considered to obtain an accurate paleomagnetic dipole moment for this time period. It demonstrates that the overall mean paleointensity of the Siberian Traps is 19.5 ± 13.0 μT which corresponds to a mean virtual dipole moment of 3.2 ± 1.8 × 1022 Am2. Results indicate that the average magnetic field intensity during Permo-Triassic boundary is significantly lower (by approximately 50%) than the present geomagnetic field intensity, and thus, it implies that the Mesozoic dipole low might extend 50 Myr further back in time than previously recognized

    Microwave paleointensities indicate a low paleomagnetic dipole moment at the Permo-Triassic boundary

    No full text
    © 2016 The AuthorsThe quantity of igneous material comprising the Siberian Traps provides a uniquely excellent opportunity to constrain Earth's paleomagnetic field intensity at the Permo-Triassic boundary. There remains however, a contradiction about the strength of the magnetic field that is exacerbated by the limited number of measurement data. To clarify the geomagnetic field behavior during this time period, for the first time, a microwave paleointensity study has been carried out on the Permo-Triassic flood basalts in order to complement existing datasets obtained using conventional thermal techniques. Samples, which have been dated at ∼250 Ma, of the Permo-Triassic trap basalts from the northern extrusive (Maymecha-Kotuy region) and the southeastern intrusive (areas of the Sytikanskaya and Yubileinaya kimberlite pipes) localities on the Siberian platform are investigated. These units have already demonstrated reliable paleomagnetic directions consistent with the retention of a primary remanence. Furthermore, Scanning Electron Microscope analysis confirms the presence of iron oxides likely of primary origin. Microwave Thellier-type paleointensity experiments (IZZI protocol with partial thermoremanent magnetization checks) are performed on 50 samples from 11 sites, of which, 28 samples from 7 sites provide satisfactory paleointensity data. The samples display corresponding distinct directional components, positive pTRM checks and little or no zig-zagging of the Arai or Zijderveld plot, providing evidence to support that the samples are not influenced by lab-induced alteration or multi-domain behavior. The accepted microwave paleointensity results from this study are combined with thermal Thellier-type results from previously published studies to obtain overall estimates for different regions of the Siberian Traps. The mean geomagnetic field intensity obtained from the samples of the northern part is 13.4 ± 12.7 μT (Maymecha-Kotuy region), whereas from the southeastern part is 17.3 ± 16.5 μT (Sytikanskaya kimberlite pipe) and 48.5 ± 7.3 μT (Yubileinaya kimberlite pipe), suggesting that the regional discrepancy is probably due to the insufficient sampling of geomagnetic secular variation, and thus, multiple localities need to be considered to obtain an accurate paleomagnetic dipole moment for this time period. It demonstrates that the overall mean paleointensity of the Siberian Traps is 19.5 ± 13.0 μT which corresponds to a mean virtual dipole moment of 3.2 ± 1.8 × 1022 Am2. Results indicate that the average magnetic field intensity during Permo-Triassic boundary is significantly lower (by approximately 50%) than the present geomagnetic field intensity, and thus, it implies that the Mesozoic dipole low might extend 50 Myr further back in time than previously recognized

    An 84-kyr paleomagnetic record from the sediments of Lake Baikal, Siberia

    No full text
    We have conducted a paleomagnetic study of sediment cores obtained from the Selenga prodelta region of Lake Baikal, Russia. This record, which spans approximately the last 84 kyr, contributes to a better understanding of the nature of geomagnetic field behavior in Siberia and is a useful correlation and dating tool. We demonstrate that the Lake Baikal sediments are recording variations in the geomagnetic field. The directional record displays secular variation behavior with a geomagnetic excursion at 20 ka and additional excursions appearing as large-amplitude secular variation at 41, 61, and 67 ka. Smoothing of the geomagnetic excursion behavior occurs in Lake Baikal sediments owing to the intermediate sedimentation rate (13 cm kyr-1). The Lake Baikal relative paleointensity record correlates to absolute paleointensity data for the last 10 kyr and to relative paleointensity records from the Mediterranean Sea and Indian Ocean for the last 84 kyr. This correlation suggests a strong global (i.e., dipole) component to these records and further supports the reliability of sediments as recorders of relative geomagnetic paleointensity. We show that a relative geomagnetic intensity stratigraphy has a potential resolution of 7 kyr by correlating continental and marine records. The geomagnetic intensity stratigraphy helps constrain the age of the difficult to date Lake Baikal sediments

    A rock-magnetic record from Lake Baikal, Siberia: Evidence for Late Quaternary climate change

    No full text
    Rock-magnetic measurements of sediment cores from the Academician Ridge region of Lake Baikal, Siberia show variations related to Late Quaternary climate change. Based upon the well-dated last glacial-interglacial transition, variations in magnetic concentration and mineralogy are related to glacial-interglacial cycles using a conceptual model. Interglacial intervals are characterized by low magnetic concentrations and a composition that is dominated by low coercivity minerals. Glacial intervals are characterized by high magnetic concentrations and increased amounts of high coercivity minerals. The variation in magnetic concentration is consistent with dilution by diatom opal during the more productive interglacial periods. We also infer an increased contribution of eolian sediment during the colder, windier, and more arid glacial conditions when extensive loess deposits were formed throughout Europe and Asia. Eolian transport is inferred to deliver increased amounts of high coercivity minerals as staining on eolian grains during the glacial intervals. Variations in magnetic concentration and mineralogy of Lake Baikal sediment correlate to the SPECMAP marine oxygen-isotope record. The high degree of correlation between Baikal magnetic concentration/mineralogy and the SPECMAP oxygen-isotope record indicates that Lake Baikal sediment preserves a history of climate change in central Asia for the last 250 ka. This correlation provides a method of estimating the age of sediment beyond the range of the radiocarbon method. Future work must include providing better age control and additional climate proxy data, thereby strengthening the correlation of continental and marine climate records. © 1994

    Lake Baikal record of continental climate response to orbital insolation during the past 5 million years

    No full text
    The sedimentary record of biogenic silica from Lake Baikal in south- central Siberia suggests that this region of central Asia was impacted by two major cooling episodes at 2.8 to 2.6 and 1.8 to 1.6 million years ago. The spectral evolution of this continental interior site parallels the evolutionary frequency spectra for various marine oxygen isotope records. In the Baikal record, the 41,000-year obliquity cycle is particularly strong from 1.8 to 0.8 million years ago; variance in the 100,000-year eccentricity band increases during the past 0.8 million years. The expected precession frequency of 23,000 years is highest during the past 400,000 years. The modulation of the predicted 23,000- and 41,000-year insolation forcing by the 100,000- and 400,000-year eccentricity bands indicates that the transfer of variance from the precession and obliquity frequencies to the eccentricity part of the spectrum occurred in the Eurasian continental interior, as well as in tropical and high-latitude ocean sites
    corecore