1,144 research outputs found
Harmonic oscillator with nonzero minimal uncertainties in both position and momentum in a SUSYQM framework
In the context of a two-parameter deformation of the
canonical commutation relation leading to nonzero minimal uncertainties in both
position and momentum, the harmonic oscillator spectrum and eigenvectors are
determined by using techniques of supersymmetric quantum mechanics combined
with shape invariance under parameter scaling. The resulting supersymmetric
partner Hamiltonians correspond to different masses and frequencies. The
exponential spectrum is proved to reduce to a previously found quadratic
spectrum whenever one of the parameters , vanishes, in which
case shape invariance under parameter translation occurs. In the special case
where , the oscillator Hamiltonian is shown to coincide
with that of the q-deformed oscillator with and its eigenvectors are
therefore --boson states. In the general case where , the eigenvectors are constructed as linear combinations of
--boson states by resorting to a Bargmann representation of the latter
and to -differential calculus. They are finally expressed in terms of a
-exponential and little -Jacobi polynomials.Comment: LaTeX, 24 pages, no figure, minor changes, additional references,
final version to be published in JP
Mode Generating Mechanism in Inflation with Cutoff
In most inflationary models, space-time inflated to the extent that modes of
cosmological size originated as modes of wavelengths at least several orders of
magnitude smaller than the Planck length. Recent studies confirmed that,
therefore, inflationary predictions for the cosmic microwave background
perturbations are generally sensitive to what is assumed about the Planck
scale. Here, we propose a framework for field theories on curved backgrounds
with a plausible type of ultraviolet cutoff. We find an explicit mechanism by
which during cosmic expansion new (comoving) modes are generated continuously.
Our results allow the numerical calculation of a prediction for the CMB
perturbation spectrum.Comment: 9 pages, LaTe
On the spin of gravitational bosons
We unearth spacetime structure of massive vector bosons, gravitinos, and
gravitons. While the curvatures associated with these particles carry a
definite spin, the underlying potentials cannot be, and should not be,
interpreted as single spin objects. For instance, we predict that a spin
measurement in the rest frame of a massive gravitino will yield the result 3/2
with probability one half, and 1/2 with probability one half. The simplest
scenario leaves the Riemannian curvature unaltered; thus avoiding conflicts
with classical tests of the theory of general relativity. However, the quantum
structure acquires additional contributions to the propagators, and it gives
rise to additional phases.Comment: Honorable mention, 2002 Gravity Research Foundation Essay
Lorentz-covariant deformed algebra with minimal length
The -dimensional two-parameter deformed algebra with minimal length
introduced by Kempf is generalized to a Lorentz-covariant algebra describing a
()-dimensional quantized space-time. For D=3, it includes Snyder algebra
as a special case. The deformed Poincar\'e transformations leaving the algebra
invariant are identified. Uncertainty relations are studied. In the case of D=1
and one nonvanishing parameter, the bound-state energy spectrum and
wavefunctions of the Dirac oscillator are exactly obtained.Comment: 8 pages, no figure, presented at XV International Colloquium on
Integrable Systems and Quantum Symmetries (ISQS-15), Prague, June 15-17, 200
On Signatures of Short Distance Physics in the Cosmic Microwave Background
Following a self-contained review of the basics of the theory of cosmological
perturbations, we discuss why the conclusions reached in the recent paper by
Kaloper et al are too pessimistic estimates of the amplitude of possible
imprints of trans-Planckian (string) physics on the spectrum of cosmic
microwave anisotropies in an inflationary Universe. It is shown that the likely
origin of large trans-Planckian effects on late time cosmological fluctuations
comes from nonadiabatic evolution of the state of fluctuations while the
wavelength is smaller than the Planck (string) scale, resulting in an excited
state at the time that the wavelength crosses the Hubble radius during
inflation.Comment: 11 pages, 4 figure
Quantum Error Correction of Observables
A formalism for quantum error correction based on operator algebras was
introduced in [1] via consideration of the Heisenberg picture for quantum
dynamics. The resulting theory allows for the correction of hybrid
quantum-classical information and does not require an encoded state to be
entirely in one of the corresponding subspaces or subsystems. Here, we provide
detailed proofs for the results of [1], derive a number of new results, and we
elucidate key points with expanded discussions. We also present several
examples and indicate how the theory can be extended to operator spaces and
general positive operator-valued measures.Comment: 22 pages, 1 figure, preprint versio
Trans-Planckian Physics and the Spectrum of Fluctuations in a Bouncing Universe
In this paper, we calculate the spectrum of scalar field fluctuations in a
bouncing, asymptotically flat Universe, and investigate the dependence of the
result on changes in the physics on length scales shorter than the Planck
length which are introduced via modifications of the dispersion relation. In
this model, there are no ambiguities concerning the choice of the initial
vacuum state. We study an example in which the final spectrum of fluctuations
depends sensitively on the modifications of the dispersion relation without
needing to invoke complex frequencies. Changes in the amplitude and in the
spectral index are possible, in addition to modulations of the spectrum. This
strengthens the conclusions of previous work in which the spectrum of
cosmological perturbations in expanding inflationary cosmologies was studied,
and it was found that, for dispersion relations for which the evolution is not
adiabatic, the spectrum changes from the standard prediction of
scale-invariance.Comment: 10 pages, 6 figures, RevTeX4. Analytical determination of the
spectrum, corrected some typos, conclusions unchange
The Corley-Jacobson dispersion relation and trans-Planckian inflation
In this Letter we study the dependence of the spectrum of fluctuations in
inflationary cosmology on possible effects of trans-Planckian physics, using
the Corley/Jacobson dispersion relations as an example. We compare the methods
used in previous work [1] with the WKB approximation, give a new exact
analytical result, and study the dependence of the spectrum obtained using the
approximate method of Ref. [1] on the choice of the matching time between
different time intervals. We also comment on recent work subsequent to Ref. [1]
on the trans-Planckian problem for inflationary cosmology.Comment: 6 pages, Revtex
Horizon Problem Remediation via Deformed Phase Space
We investigate the effects of a special kind of dynamical deformation between
the momenta of the scalar field of the Brans-Dicke theory and the scale factor
of the FRW metric. This special choice of deformation includes linearly a
deformation parameter. We trace the deformation footprints in the cosmological
equations of motion when the BD coupling parameter goes to infinity. One class
of the solutions gives a constant scale factor in the late time that confirms
the previous result obtained via another approach in the literature. This
effect can be interpreted as a quantum gravity footprint in the coarse grained
explanation. The another class of the solutions removes the big bang
singularity, and the accelerating expansion region has an infinite temporal
range which overcomes the horizon problem. After this epoch, there is a
graceful exiting by which the universe enters in the radiation dominated era.Comment: 13 pages, 2 figures, to appear in GER
Novel approaches for the serodiagnosis of louse-borne relapsing fever
Louse-borne relapsing fever (LBRF) caused by B. recurrentis is a poverty-related and neglected infectious disease with an endemic focus in the Horn of Africa. Re-emergence of the disease occurred in Europe during the refugee crisis in 2015 and sporadic outbreaks were frequently reported in Eastern Africa where poor settings lack affordable diagnostics. Currently, there are no validated in vitro assays available for the serodiagnosis of LBRF. The aim of this study was to develop novel and reliable immunoassays by investigating clinically suspected and culture-confirmed serum samples from LBRF patients and a broad panel of serum samples from patients with other spirochetal, bacterial, and parasitic diseases. We identified two immunoreactive antigens (complement-inhibiting protein CihC and the glycerophosphodiester phosphodiesterase GlpQ of B. recurrentis) as the most promising target candidates leading to the evaluation of two immunoassays (line immunoblot and ELISA) for IgM and IgG. To optimize the IgM immunoassay, we conducted a bioinformatic approach to localize the relevant immunogenic regions within CihC. By utilizing a N-terminal CihC fragment, the sensitivity and specificity of both immunoassays (CihC and GlpQ) were high (IgM: sensitivity 100%, specificity of 89.9%, IgG: sensitivity 100%, specificity 99.2%). In conclusion, our findings indicate the diagnostic potential of CihC and GlpQ as valuable markers for the serodiagnosis of LBRF even at early time points of infection. Here, we provide strong evidence for the utilization of these immunoassays as reliable tools in clinical practice
- …