15 research outputs found

    Environmental Resource - Economized Processes of Recycling Mineral Raw Materials of Complex Composition

    Get PDF
    The results of the studies on the justification of technological processes providing recycling of the warehoused ferruginous quartzites of complex composition and waste non-ferrous metals allowing to receive additional commodity products are given. The example of amphibole and biotite varieties of ferruginous quartzites of CMA and tailings of copper-zinc sulphide Ural ores determines the reasons of ineffective use of traditional technology solutions for recycling. The reasons of environmental hazards concerning varieties of technogenic mineral substances to the environment are identified. The presence in ferruginous quartzites complex composition of various silicates, carbonates and iron sulphides change their technological properties. So to get the iron concentrate from them suggests a new combination of technological operations performed in specially selected operating conditions. The specifics of the presence of mineral components in solid mineral wastes of nonferrous metal ores indicates the possibility of obtaining additional marketable products. With the use of laboratory multiscale modelling and physical methods of analysis regularities of variation of fractionation, separation and mineral concentration operations efficiency by varying its composition and the various influencing factors are identified. To improve the efficiency of the individual technological operations it is recommended to use different techniques, using physical and physico-chemical effects on the polymineral systems. The flow diagrams for the considered varieties of technogenic processing of mineral substances, allowing them to obtain standared quality products (metal-containing concentrates), and the results of their testing are submitted. The suggested technological solutions can reduce the amount of environmentally hazardous mineral substance, hosted in technogenic formations

    Π’Π«Π‘ΠžΠ  Π‘Π£Π›Π¬Π€Π“Π˜Π”Π Π˜Π›Π¬ΠΠ«Π₯ Π‘ΠžΠ‘Π˜Π ΠΠ’Π•Π›Π•Π™ ПРИ Π€Π›ΠžΠ’ΠΠ¦Π˜Π˜ Π‘Π£Π›Π¬Π€Π˜Π”ΠžΠ’ ЦВЕВНЫΠ₯ ΠœΠ•Π’ΠΠ›Π›ΠžΠ’ Π˜Π— УПОРНЫΠ₯ Π Π£Π” ЦВЕВНЫΠ₯ ΠœΠ•Π’ΠΠ›Π›ΠžΠ’

    Get PDF
    Methods of selection of selective collectors are analyzed. The procedure of calculation of characteristics of absolute rigidity, absolute electronegativity, and reaction ability of compounds is presented. The correspondence between the results of theoretical calculations of the reaction ability of sulfhydril collectors and experimental results of adsorption and flotation of monomineral fractions of chalcopyrite, galenite, and pyrite by sulfhydril collectors is revealed. The prediction of the collecting activity based on calculations is complicated by the features of the chemical composition of natural sulfides and defectiveness of the surface associated with the genesis of ore minerals in the deposit is revealed. Dithiophosphates and thionocarbamates are isolated as main components of selective compositions of collectors for flotation of pyrite ores of nonferrous metals based on theoretical and experimental investigations. It is shown by the complex of adsorption investigations in conditions of nonfrothing flotation and analysis of the IR frustrated total internal reflection (FTIR) spectra of concentrates of nonfrothing flotation that the nonoptimal ratio of components weakly active relative to pyrite leads to a considerable increase in pyrite floatability. Sorption of components of the sulfhydril collector and pyrite floatability increase with the fraction of a nonionogenic collector in the composition lower than 40–60%. The action mechanism, which determines the action selectivity of sulfhydril collectors during the flotation of sulfides, is determined.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π²Ρ‹Π±ΠΎΡ€Π° сСлСктивных собиратСлСй. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° расчСта ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ ТСсткости, Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ способности соСдинСний. ВыявлСно соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ тСорСтичСских расчСтов Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ способности ΡΡƒΠ»ΡŒΡ„Π³ΠΈΠ΄Ρ€ΠΈΠ»ΡŒΠ½Ρ‹Ρ… собиратСлСй ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ адсорбции, Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ ΡΡƒΠ»ΡŒΡ„Π³ΠΈΠ΄Ρ€ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ собиратСлями ΠΌΠΎΠ½ΠΎΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ Ρ…Π°Π»ΡŒΠΊΠΎΠΏΠΈΡ€ΠΈΡ‚Π°, Π³Π°Π»Π΅Π½ΠΈΡ‚Π°, ΠΏΠΈΡ€ΠΈΡ‚Π°. ΠŸΡ€ΠΎΠ³Π½ΠΎΠ· ΡΠΎΠ±ΠΈΡ€Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ активности Π½Π° основС расчСтов ослоТнСн особСнностями химичСского состава ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ², Π΄Π΅Ρ„Π΅ΠΊΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ повСрхности, связанными с гСнСзисом ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² Ρ€ΡƒΠ΄Ρ‹ Π² мСстороТдСнии. На основС тСорСтичСских ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ дитиофосфаты ΠΈ Ρ‚ΠΈΠΎΠ½ΠΎΠΊΠ°Ρ€Π±Π°ΠΌΠ°Ρ‚Ρ‹ ΠΊΠ°ΠΊ основныС ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ сСлСктивных ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΉ собиратСлСй для Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ ΠΊΠΎΠ»Ρ‡Π΅Π΄Π°Π½Π½Ρ‹Ρ… Ρ€ΡƒΠ΄ Ρ†Π²Π΅Ρ‚Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ². КомплСксом адсорбционных исслСдований Π² условиях бСспСнной Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ, Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ ИК-спСктров ΠœΠΠŸΠ’Πž ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚ΠΎΠ² бСспСнной Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π΅ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ слабоактивных ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΠΏΠΈΡ€ΠΈΡ‚Ρƒ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ флотируСмости ΠΏΠΈΡ€ΠΈΡ‚Π°. ΠŸΡ€ΠΈ Π΄ΠΎΠ»ΠΈ Π½Π΅ΠΈΠΎΠ½ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ собиратСля Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ ΠΌΠ΅Π½Π΅Π΅ 40–60 % Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‚ суммарная сорбция ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² сочСтания ΡΡƒΠ»ΡŒΡ„Π³ΠΈΠ΄Ρ€ΠΈΠ»ΡŒΠ½Ρ‹Ρ… собиратСлСй ΠΈ Ρ„Π»ΠΎΡ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΡΡ‚ΡŒ ΠΏΠΈΡ€ΠΈΡ‚Π°. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ дСйствия, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ опрСдСляСт ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ дСйствия ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΉ ΡΡƒΠ»ΡŒΡ„Π³ΠΈΠ΄Ρ€ΠΈΠ»ΡŒΠ½Ρ‹Ρ… собиратСлСй ΠΏΡ€ΠΈ Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ²

    Π­Π›Π•ΠšΠ’Π ΠžΠšΠ˜ΠΠ•Π’Π˜Π§Π•Π‘ΠšΠ˜Π™ ΠŸΠžΠ’Π•ΠΠ¦Π˜ΠΠ› ΠŸΠžΠ’Π•Π Π₯НОБВИ Π£Π›Π¬Π’Π ΠΠ’ΠžΠΠšΠ˜Π₯ Π‘Π£Π›Π¬Π€Π˜Π”ΠžΠ’ И Π€Π›ΠžΠ’ΠžΠΠšΠ’Π˜Π’ΠΠžΠ‘Π’Π¬ ΠœΠ˜ΠΠ•Π ΠΠ›ΠžΠ’

    Get PDF
    The paper shows the results obtained in experimental studies of zeta potential of ultrafine sulfides (chalcopyrite, tennantite, galena, sphalerite, pyrite, pyrrhotite); floatability of mono-mineral flotation grade sulfide fractions (–0,1 + 0,05 mm) in the mechanical flotation cell; floatability of sludges (–0,041 + 0,010 mm) in the Hallimond tube with adsorption under foamless flotation conditions. The method for preparation of ultrafine powders and sulfhydryl collectors for zeta potential measurement is provided. The paper studies zeta potential of mineral particle surface and insoluble forms of sulfhydryl collectors in the pH range from 2,0 to 12,5 (acidic medium was prepared using H2SO4, alkali medium was prepared using NaOH or Ca(OH)2). The obtained zeta potentials of sulfides were different for sodium hydroxide and lime media. In NaOH medium at pH> 9,5 zeta potential values of all sulfides were negative; in Ca(OH)2 medium at pH > 11 they had positive zeta potential values (1–18 mV); chalcopyrite zeta potential values are positive in the studied range pHCa(OH)2 = 9,0Γ·12,5. Isoelectric points were identified for chalcopyrite (pH = 6,5 and 8,8), tennantite (pH = 3,0), sphalerite (pH = 5,1 and 6,4), pyrite (pH = 3,1 and 8,9) and pyrrhotite (pH = 7,0) in sulfuric acid and sodium hydroxide medium; for tennantite and sphalerite (pH = 12,0), galena (pH = 11,2), pyrite (pH = 9,5 and 11,2), pyrrhotite (pH = 9,5 and 12,1) in lime medium. Measurements of zeta potential values of ultrafine sulfide particles make it possible to define more exactly the mechanism of interactionΒ between sulfhydryl collectors and sulfides, associate non-selective extraction of sulfide sludges in high-alkali lime medium with the electrostatic component contribution during adhesion of ultrafine sulfide particles on bubbles and their mechanical removal to the froth.Π˜Π·Π»ΠΎΠΆΠ΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований элСктрокинСтичСского ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° (ЭКП) ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² (Ρ…Π°Π»ΡŒΠΊΠΎΠΏΠΈΡ€ΠΈΡ‚, Ρ‚Π΅Π½Π½Π°Π½Ρ‚ΠΈΡ‚, Π³Π°Π»Π΅Π½ΠΈΡ‚, сфалСрит, ΠΏΠΈΡ€ΠΈΡ‚, ΠΏΠΈΡ€Ρ€ΠΎΡ‚ΠΈΠ½); флотируСмости ΠΌΠΎΠ½ΠΎΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ крупности (–0,1 + 0,05 ΠΌΠΌ) Π² мСханичСской Ρ„Π»ΠΎΡ‚ΠΎΠΌΠ°ΡˆΠΈΠ½Π΅; флотируСмости шламов (–0,041 + 0,010 ΠΌΠΌ) Π² Ρ‚Ρ€ΡƒΠ±ΠΊΠ΅ Π₯Π°Π»Π»ΠΈΠΌΠΎΠ½Π΄Π° с адсорбциСй Π² условиях бСспСнной Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΠΈ ΡΡƒΠ»ΡŒΡ„Π³ΠΈΠ΄Ρ€ΠΈΠ»ΡŒΠ½Ρ‹Ρ… собиратСлСй ΠΊ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡŽ ЭКП. Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ ЭКП повСрхности частиц ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² ΠΈ нСрастворимых Ρ„ΠΎΡ€ΠΌ ΡΡƒΠ»ΡŒΡ„Π³ΠΈΠ΄Ρ€ΠΈΠ»ΡŒΠ½Ρ‹Ρ… собиратСлСй Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ рН ΠΎΡ‚ 2,0 Π΄ΠΎ 12,5 (кислая срСда создавалась с использованиСм H2SO4, щСлочная – NaOH ΠΈΠ»ΠΈ Ca(OH)2) – Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Ρ€Π°Π·Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ЭКП ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² для срСды гидроксида натрия ΠΈ извСсти. Π’ срСдС NaOH ΠΏΡ€ΠΈ рН > 9,5 Ρƒ всСх ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² значСния ЭКП ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅; Π² срСдС Ca(OH)2 ΠΏΡ€ΠΈ рН > 11 ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ЭКП (1–18 ΠΌΠ’); Ρƒ Ρ…Π°Π»ΡŒΠΊΠΎΠΏΠΈΡ€ΠΈΡ‚Π° ЭКП ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ Π² исслСдованном Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ pHCa(OH)2 = = 9,0Γ·12,5. УстановлСны значСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ заряда: Π² срСдС сСрной кислоты ΠΈ гидроксида натрия – для Ρ…Π°Π»ΡŒΠΊΠΎΠΏΠΈΡ€ΠΈΡ‚Π° (рН = 6,5 ΠΈ 8,8), Ρ‚Π΅Π½Π½Π°Π½Ρ‚ΠΈΡ‚Π° (рН = 3,0), сфалСрита (рН = 5,1 ΠΈ 6,4), ΠΏΠΈΡ€ΠΈΡ‚Π° (рН = 3,1 ΠΈ 8,9) ΠΈ ΠΏΠΈΡ€Ρ€ΠΎΡ‚ΠΈΠ½Π° (рН = 7,0); Π² извСстковой срСдС – для Ρ‚Π΅Π½Π½Π°Π½Ρ‚ΠΈΡ‚Π° ΠΈ сфалСрита (рН = 12,0), Π³Π°Π»Π΅Π½ΠΈΡ‚Π° (рН = 11,2), ΠΏΠΈΡ€ΠΈΡ‚Π° (рН = 9,5 ΠΈ 11,2), ΠΏΠΈΡ€Ρ€ΠΎΡ‚ΠΈΠ½Π° (рН = 9,5 ΠΈ 12,1). Π˜Π·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡ ЭКП ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ‚ΠΎΠ½ΠΊΠΈΡ… частиц ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡƒΡ‚ΠΎΡ‡Π½ΠΈΡ‚ΡŒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ взаимодСйствия ΡΡƒΠ»ΡŒΡ„Π³ΠΈΠ΄Ρ€ΠΈΠ»ΡŒΠ½Ρ‹Ρ… собиратСлСй с ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π°ΠΌΠΈ, ΡΠ²ΡΠ·Π°Ρ‚ΡŒ нСсСлСктивноС ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ шламов ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² Π² высокощСлочной извСстковой срСдС с Π²ΠΊΠ»Π°Π΄ΠΎΠΌ элСктростатичСской ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ ΠΏΡ€ΠΈ Π°Π΄Π³Π΅Π·ΠΈΠΈ ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ‚ΠΎΠ½ΠΊΠΈΡ… частиц ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² Π½Π° ΠΏΡƒΠ·Ρ‹Ρ€ΡŒΠΊΠ°Ρ… ΠΈ ΠΈΡ… мСханичСским выносом Π² ΠΏΠ΅Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚

    Π€Π»ΠΎΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ расчСтная рСакционная ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π½Ρ‹Ρ… ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ² ΠΈ Π·ΠΎΠ»ΠΎΡ‚Π°

    No full text
    The paper provides the results of theoretical reactivity calculations for gold, molybdenum, stibnite, galena, chalcopyrite, arsenopyrite and pyrite in comparison with such experimental data as the floatability of monomineral fractions with butyl xanthate, wetting angle values, changes in the kinetics of the mineral electrode potential. The following calculation series in terms of reactivity and oxidizing ability were established by calculation: Au < Sb2S3 < MoS2 < PbS < CuFeS2 < FeAsS < FeS2. During the Hallimond tube flotation, natural gold grains demonstrated the highest recovery (70 %) in the рН = 5Γ·7 range compared to all the studied sulfides. Molybdenite and stibnite are floated at the level of 50 % under the same conditions. As pH increases towards the alkaline region, a decrease in the floatability of all sulfides except for chalcopyrite is observed. It was established that the highest recovery is achieved when the required time of conditioning with the collector is the inverse of their reactivity. The measured wetting angle of a drop of water on an untreated surface has the highest value (78Β°) for a gold plate, and the lowest one (67Β°) for pyrite, but the latter features the greatest increase in the wetting angle (by 15Β°) after treatment with butyl xanthate at a concentration of 10–4 mol/l and pH = 6. For molybdenite, treatment with butyl xanthate has practically no effect on the measured wetting angle. The Sb2S3 < PbS < CuFeS2 < FeAsS < FeS2 series is determined according to the electrode potential in the рН = 2.0Γ·5.6 range. Theoretical calculations and experimental data obtained when studying monofractions of sulfides and gold showed that experimental conditions (pH, conditioning time, collector concentration) significantly affect the floatability. The calculated reactivity of chemical sulfide compounds and gold in comparison with experimental results proved the importance of maintaining certain flotation conditions to create contrast in the floatability of minerals.Π˜Π·Π»ΠΎΠΆΠ΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ тСорСтичСских расчСтов Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ способности Π·ΠΎΠ»ΠΎΡ‚Π°, ΠΌΠΎΠ»ΠΈΠ±Π΄Π΅Π½ΠΈΡ‚Π°, стибнита, Π³Π°Π»Π΅Π½ΠΈΡ‚Π°, Ρ…Π°Π»ΡŒΠΊΠΎΠΏΠΈΡ€ΠΈΡ‚Π°, арсСнопирита ΠΈ ΠΏΠΈΡ€ΠΈΡ‚Π° Π² сравнСнии с ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ, Ρ‚Π°ΠΊΠΈΠΌΠΈ ΠΊΠ°ΠΊ Ρ„Π»ΠΎΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ½ΠΎΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ Π±ΡƒΡ‚ΠΈΠ»ΠΎΠ²Ρ‹ΠΌ ксантогСнатом, Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΊΡ€Π°Π΅Π²ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° смачивания, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ элСктродного ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… элСктродов. РасчСтным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ установлСн ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ расчСтный ряд ΠΏΠΎ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ способности ΠΈ способности ΠΊ окислСнию: Au < Sb2S3 < MoS2 < PbS < CuFeS2 < FeAsS < FeS2. ΠŸΡ€ΠΈ Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ Π² Ρ‚Ρ€ΡƒΠ±ΠΊΠ΅ Π₯Π°Π»Π»ΠΈΠΌΠΎΠ½Π΄Π° ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Π΅ Π·ΠΎΠ»ΠΎΡ‚ΠΈΠ½Ρ‹ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ высокоС ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ (70 %) Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ рН = 5Γ·7 ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ со всСми исслСдованными ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π°ΠΌΠΈ. ΠœΠΎΠ»ΠΈΠ±Π΄Π΅Π½ΠΈΡ‚ ΠΈ стибнит Π² Ρ‚Π΅Ρ… ΠΆΠ΅ условиях Ρ„Π»ΠΎΡ‚ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ 50 %. Π‘ ростом рН Π² Ρ‰Π΅Π»ΠΎΡ‡Π½ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π΄ΠΎ рН = 12 Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ сниТСниС флотоактивности всСх ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ², Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ…Π°Π»ΡŒΠΊΠΎΠΏΠΈΡ€ΠΈΡ‚Π°. УстановлСно, Ρ‡Ρ‚ΠΎ для получСния Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ высоких ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ извлСчСния трСбуСмая ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ кондиционирования с собиратСлСм ΠΎΠ±Ρ€Π°Ρ‚Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΈΡ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ способности. Π˜Π·ΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹ΠΉ ΠΊΡ€Π°Π΅Π²ΠΎΠΉ ΡƒΠ³ΠΎΠ» смачивания ΠΊΠ°ΠΏΠ»ΠΈ Π²ΠΎΠ΄Ρ‹ Π½Π° Π½Π΅ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ повСрхности ΠΈΠΌΠ΅Π΅Ρ‚ наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ (78Β°) для Π·ΠΎΠ»ΠΎΡ‚ΠΎΠΉ пластины, Π° наимСньшСС (67Β°) для ΠΏΠΈΡ€ΠΈΡ‚Π°, Π½ΠΎ Ρƒ послСднСго ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ прирост ΠΊΡ€Π°Π΅Π²ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° смачивания (Π½Π° 15Β°) послС ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π±ΡƒΡ‚ΠΈΠ»ΠΎΠ²Ρ‹ΠΌ ксантогСнатом ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 10–4 моль/Π» ΠΈ рН = 6. Для ΠΌΠΎΠ»ΠΈΠ±Π΄Π΅Π½ΠΈΡ‚Π° ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π±ΡƒΡ‚ΠΈΠ»ΠΎΠ²Ρ‹ΠΌ ксантогСнатом практичСски Π½Π΅ влияСт Π½Π° ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΊΡ€Π°Π΅Π²ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° смачивания. По Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ элСктродного ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° Π² области рН = 2,0Γ·5,6 ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ряд: Sb2S3 < PbS < CuFeS2 < FeAsS < FeS2. ВСорСтичСскими расчСтами ΠΈ Π² Ρ…ΠΎΠ΄Π΅ экспСримСнтов ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΌΠΎΠ½ΠΎΡ„Ρ€Π°ΠΊΡ†ΠΈΠΉ ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² ΠΈ Π·ΠΎΠ»ΠΎΡ‚Π° установлСно, Ρ‡Ρ‚ΠΎ условия ΠΈΡ… провСдСния (Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° рН, ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ кондиционирования, концСнтрация собиратСля) Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Ρ„Π»ΠΎΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ расчСтов Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ способности химичСских ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π½Ρ‹Ρ… соСдинСний ΠΈ Π·ΠΎΠ»ΠΎΡ‚Π° Π² сопоставлСнии с ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°ΡŽΡ‚ Π²Π°ΠΆΠ½ΠΎΡΡ‚ΡŒ поддСрТания ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… условий Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ для создания контрастности Π²ΠΎ флотируСмости ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ²

    ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ тСхнологичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ Π±Π΅Π΄Π½Ρ‹Ρ… Ρ‚ΠΎΠ½ΠΊΠΎΠ²ΠΊΡ€Π°ΠΏΠ»Π΅Π½Π½Ρ‹Ρ… ΡˆΠ΅Π΅Π»ΠΈΡ‚ΠΎΠ²Ρ‹Ρ… Ρ€ΡƒΠ΄

    No full text
    The paper describes the results of studying ways to improve the contrast of calcite and scheelite technological properties using water glass combined with aluminum, zinc, iron, magnesium sulphate salts, a mixture of water glass and calcium chloride, sodium carboxymethyl cellulose (CMC), combinations of sodium oleate with low-polar compounds (neonol, fatty isoalcohols), liquid phase and oleate ultrasound treatment. The monomineralic fraction of calcite floated by mechanical cell demonstrated that the minimum recovery of calcite is achieved by combining the Fe(II) salt and water glass (3(4) : 1). When f loating lean sheelite ore with a high carbonate modulus on domestic water, the combined use of water glass and CaCl2 reduces the floatability of calcium. Calcium chloride added to water glass on recycling water leads to a certain increase in the rough concentrate yield (13.8 to 14.1 %) with a significant decrease of WO3 recovery to the finished selection concentrate (72.7 to 53.3 %) and a deterioration in the concentrate quality. Replacement of water glass with CMC did not show satisfactory results. Ultrasonic treatment of pulp, liquid phase, collector leads to a certain increase in the calcite floatability, possibly due to the higher liquid phase temperature and increased proportion of the oleate ionic form. The use of neonols in the reagent scheme of flotation of scheelite-containing ore with a high carbonate modulus found no evidence of a decrease in the flotatability of calcite obtained when studying monomineralic calcite fractions unlike fatty isoalcohols that provided better concentrates in the selection cycle in comparison with a single oleate.Π˜Π·Π»ΠΎΠΆΠ΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ контрастности тСхнологичСских свойств ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚Π° ΠΈ ΡˆΠ΅Π΅Π»ΠΈΡ‚Π° Π·Π° счСт совмСстного примСнСния ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ стСкла с солями ΡΡƒΠ»ΡŒΡ„Π°Ρ‚ΠΎΠ² алюминия, Ρ†ΠΈΠ½ΠΊΠ°, ΠΆΠ΅Π»Π΅Π·Π°, магния, смСси ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ стСкла ΠΈ хлористого ΠΊΠ°Π»ΡŒΡ†ΠΈΡ, ΠΊΠ°Ρ€Π±ΠΎΠΊΡΠΈΠΌΠ΅Ρ‚ΠΈΠ»Ρ†Π΅Π»Π»ΡŽΠ»ΠΎΠ·Ρ‹ натрия (КМЦ), сочСтаний ΠΎΠ»Π΅Π°Ρ‚Π° натрия с малополярными соСдинСниями (Π½Π΅ΠΎΠ½ΠΎΠ», ΠΆΠΈΡ€Π½Ρ‹Π΅ изоспирты), Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΆΠΈΠ΄ΠΊΠΎΠΉ Ρ„Π°Π·Ρ‹ ΠΈ ΠΎΠ»Π΅Π°Ρ‚Π°. ΠŸΡ€ΠΈ Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ ΠΌΠΎΠ½ΠΎΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚Π° Π² мСханичСской Ρ„Π»ΠΎΡ‚ΠΎΠΌΠ°ΡˆΠΈΠ½Π΅ наимСньшСС ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚Π° достигаСтся ΠΏΡ€ΠΈ совмСстном использовании соли ΠΆΠ΅Π»Π΅Π·Π° (II) ΠΈ ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ стСкла (3(4) : 1). ΠŸΡ€ΠΈ Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ Π±Π΅Π΄Π½ΠΎΠΉ ΡˆΠ΅Π΅Π»ΠΈΡ‚ΠΎΠ²ΠΎΠΉ Ρ€ΡƒΠ΄Ρ‹ с высоким ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½Ρ‹ΠΌ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ Π½Π° Π²ΠΎΠ΄ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΠΉ Π²ΠΎΠ΄Π΅ совмСстноС ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ стСкла ΠΈ CaCl2 сниТаСт Ρ„Π»ΠΎΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚Π°. На ΠΎΠ±ΠΎΡ€ΠΎΡ‚Π½ΠΎΠΉ Π²ΠΎΠ΄Π΅ Π΄ΠΎΠ±Π°Π²ΠΊΠ° хлористого ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΠΊ ΠΆΠΈΠ΄ΠΊΠΎΠΌΡƒ стСклу ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ росту Π²Ρ‹Ρ…ΠΎΠ΄Π° Ρ‡Π΅Ρ€Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π° (с 13,8 Π΄ΠΎ 14,1 %) ΠΏΡ€ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ сниТСнии извлСчСния WO3 Π² Π³ΠΎΡ‚ΠΎΠ²Ρ‹ΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚ сСлСкции (с 72,7 Π΄ΠΎ 53,3 %) ΠΈ ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΠΈ качСства ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚Π°. Π—Π°ΠΌΠ΅Π½Π° ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ стСкла Π½Π° КМЦ Π½Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². Π£Π—-ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΡƒΠ»ΡŒΠΏΡ‹, ΠΆΠΈΠ΄ΠΊΠΎΠΉ Ρ„Π°Π·Ρ‹, собиратСля обуславливаСт Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ флотоактивности ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚Π° – Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Π·Π° счСт роста Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΆΠΈΠ΄ΠΊΠΎΠΉ Ρ„Π°Π·Ρ‹, увСличСния Π΄ΠΎΠ»ΠΈ ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΎΠ»Π΅Π°Ρ‚Π°. ИспользованиС Π½Π΅ΠΎΠ½ΠΎΠ»ΠΎΠ² Π² Ρ€Π΅Π°Π³Π΅Π½Ρ‚Π½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ„Π»ΠΎΡ‚Π°Ρ†ΠΈΠΈ ΡˆΠ΅Π΅Π»ΠΈΡ‚ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‰Π΅ΠΉ Ρ€ΡƒΠ΄Ρ‹ с высоким ΠΊΠ°Ρ€Π±ΠΎΠ½Π°Ρ‚Π½Ρ‹ΠΌ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ Π½Π΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ»ΠΎ сниТСния флотоактивности ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈ исслСдовании ΠΌΠΎΠ½ΠΎΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚Π°, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ ΠΆΠΈΡ€Π½Ρ‹Ρ… изоспиртов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ качСствСнныС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ‚Ρ‹ Π² Ρ†ΠΈΠΊΠ»Π΅ сСлСкции Π² сравнСнии с ΠΎΠ΄Π½ΠΈΠΌ ΠΎΠ»Π΅Π°Ρ‚ΠΎΠΌ
    corecore