49,479 research outputs found
Development of CO2 laser Doppler instrumentation for detection of clear air turbulence, volume 2: Appendices
Analyses of the mounting and mount support systems of the clear air turbulence transmitters verify that satisfactory shock and vibration isolation are attained. The mount support structure conforms to flight crash safety requirements with high margins of safety. Restraint cables reinforce the mounts in the critical loaded forward direction limiting maximum forward system deflection to 1 1/4 inches
Spectral-discrete solitons and localization in frequency space
We report families of discrete optical solitons in frequency space, or
spectral-discrete solitons existing in a dispersive Raman medium, where
individual side-bands are coupled by coherence. The associated time-domain
patterns correspond to either trains of ultrashort pulses, or weakly modulated
waves. We describe the physics behind the spectral localization and study
soliton bifurcations, stability and dynamics.Comment: 4 pages, 4 figures, submitted to Opt. Let
Simultaneous calculation of the helical pitch and the twist elastic constant in chiral liquid crystals from intermolecular torques
We present a molecular simulation method that yields simultaneously the equilibrium pitch wave number q and the twist elastic constant K2 of a chiral nematic liquid crystal by sampling the torque density. A simulation of an untwisted system in periodic boundary conditions gives the product K2q; a further simulation with a uniform twist applied provides enough information to separately determine the two factors. We test our new method for a model potential, comparing the results with K2q from a thermodynamic integration route, and with K2 from an order fluctuation analysis. We also present a thermodynamic perturbation theory analysis valid in the limit of weak chirality
Event by Event fluctuations and Inclusive Distribution
Event-by-event observables are compared with conventional inclusive
measurements. We find that moments of event-by-event fluctuations are closely
related to inclusive correlation functions. Implications for upcomming heavy
ion experiments are discussed.Comment: Several typos corrected, conclusions unchange
A model for the accidental catalysis of protein unfolding in vivo
Activated processes such as protein unfolding are highly sensitive to
heterogeneity in the environment. We study a highly simplified model of a
protein in a random heterogeneous environment, a model of the in vivo
environment. It is found that if the heterogeneity is sufficiently large the
total rate of the process is essentially a random variable; this may be the
cause of the species-to-species variability in the rate of prion protein
conversion found by Deleault et al. [Nature, 425 (2003) 717].Comment: 5 pages, 2 figure
Sn delta-doping in GaAs
We have prepared a number of GaAs structures delta-doped by Sn using the
well-known molecular beam epitaxy growth technique. The samples obtained for a
wide range of Sn doping densities were characterised by magnetotransport
experiments at low temperatures and in high magnetic fields up to 38 T.
Hall-effect and Shubnikov-de Haas measurements show that the electron densities
reached are higher than for other delta-dopants, like Si and Be. The maximum
carrier density determined by the Hall effect equals 8.4x10^13 cm^-2. For all
samples several Shubnikov-de Haas frequencies were observed, indicating the
population of multiple subbands. The depopulation fields of the subbands were
determined by measuring the magnetoresistance with the magnetic field in the
plane of the delta-layer. The experimental results are in good agreement with
selfconsistent bandstructure calculations. These calculation shows that in the
sample with the highest electron density also the conduction band at the L
point is populated.Comment: 11 pages text (ps), 9 figures (ps), submitted to Semicon. Science
Tech
Generation of continuous-wave THz radiation by use of quantum interference
We propose a scheme for generation of continuous-wave THz radiation. The
scheme requires a medium where three discrete states in a
configuration can be selected, with the THz-frequency transition between the
two lower metastable states. We consider the propagation of three-frequency
continuous-wave electromagnetic (e.m.) radiation through a medium.
Under resonant excitation, the medium absorption can be strongly reduced due to
quantum interference of transitions, while the nonlinear susceptibility is
enhanced. This leads to very efficient energy transfer between the e.m. waves
providing a possibility for THz generation. We demonstrate that the photon
conversion efficiency is approaching unity in this technique.Comment: 18 pages, 4 figure
Critical Behaviour of 3D Systems with Long-Range Correlated Quenched Defects
A field-theoretic description of the critical behaviour of systems with
quenched defects obeying a power law correlations for
large separations is given. Directly for three-dimensional systems
and different values of correlation parameter a
renormalization analysis of scaling function in the two-loop approximation is
carried out, and the fixed points corresponding to stability of the various
types of critical behaviour are identified. The obtained results essentially
differ from results evaluated by double - expansion. The
critical exponents in the two-loop approximation are calculated with the use of
the Pade-Borel summation technique.Comment: Submitted to J. Phys. A, Letter to Editor 9 pages, 4 figure
- …