4,906 research outputs found

    Two-channel point-contact tunneling theory of superconductors

    Get PDF
    We introduce a two-channel tunneling model to generalize the widely used BTK theory of point-contact conductance between a normal metal contact and superconductor. Tunneling of electrons can occur via localized surface states or directly, resulting in a Fano resonance in the differential conductance G=dI/dVG=dI/dV. We present an analysis of GG within the two-channel model when applied to soft point-contacts between normal metallic silver particles and prototypical heavy-fermion superconductors CeCoIn5_5 and CeRhIn5_5 at high pressures. In the normal state the Fano line shape of the measured GG is well described by a model with two tunneling channels and a large temperature-independent background conductance. In the superconducting state a strongly suppressed Andreev reflection signal is explained by the presence of the background conductance. We report Andreev signal in CeCoIn5_5 consistent with standard dx2y2d_{x^2-y^2}-wave pairing, assuming an equal mixture of tunneling into [100] and [110] crystallographic interfaces. Whereas in CeRhIn5_5 at 1.8 and 2.0 GPa the signal is described by a dx2y2d_{x^2-y^2}-wave gap with reduced nodal region, i.e., increased slope of the gap opening on the Fermi surface. A possibility is that the shape of the high-pressure Andreev signal is affected by the proximity of a line of quantum critical points that extends from 1.75 to 2.3 GPa, which is not accounted for in our description of the heavy-fermion superconductor.Comment: 13 pages, 13 figure

    Comment on "Giant Plasticity of a Quantum Crystal"

    Get PDF
    In their Letter, Haziot et al. [Phys. Rev. Lett. 110 (2013) 035301] report a novel phenomenon of giant plasticity for hcp Helium-4 quantum crystals. They assert that Helium-4 exhibits mechanical properties not found in classical plasticity theory. Specifically, they examine high-quality crystals as a function of temperature and applied strain, where the shear modulus reaches a plateau and dissipation becomes close to zero; both quantities are reported to be independent of stress and strain, implying a reversible dissipation process and quantum tunneling. In this Comment, we show that these signatures can be explained with a classical model of thermally activated dislocation glide without the need to invoke quantum tunneling or dissipationless motion. Recently, we proposed a dislocation glide model in solid Helium-4 containing the dissipation contribution in the presence of other dislocations with qualitatively similar behavior [Zhou et al., Philos. Mag. Lett. 92 (2012) 608].Comment: 1 page, 1 figure, comment; minor revision

    Are there nodes in LaFePO, BaFe2_2(AsP)2_2, and KFe2_2As2_2 ?

    Full text link
    We reexamined the experimental evidences for the possible existence of the superconducting (SC) gap nodes in the three most suspected Fe-pnictide SC compounds: LaFePO, BaFe2_2(As0.67_{0.67}P0.33_{0.33})2_2, and KFe2_2As2_2. We showed that while the TT-linear temperature dependence of the penetration depth λ(T)\lambda(T) of these three compounds indicate extremely clean nodal gap superconductors, the thermal conductivity data limT,H0κS(H,T)/T\lim_{T,H \rightarrow 0} \kappa_S (H,T)/T unambiguously showed that LaFePO and BaFe2_2(As0.67_{0.67}P0.33_{0.33})2_2 are extremely dirty, while KFe2_2As2_2 can be clean. This apparently conflicting experimental data casts a serious doubt on the nodal gap possibility on LaFePO and BaFe2_2(As0.67_{0.67}P0.33_{0.33})2_2.Comment: 11 pages, 5 figures A new section "4. Remark on the quantum oscillation (QO) experiments" is adde

    19F nuclear spin relaxation and spin diffusion effects in the single ion magnet LiYF4:Ho3+

    Full text link
    Temperature and magnetic field dependences of the 19F nuclear spin-lattice relaxation in a single crystal of LiYF4 doped with holmium are described by an approach based on a detailed consideration of the magnetic dipole-dipole interactions between nuclei and impurity paramagnetic ions and nuclear spin diffusion processes. The observed non-exponential long time recovery of the nuclear magnetization after saturation at intermediate temperatures is in agreement with predictions of the spin-diffusion theory in a case of the diffusion limited relaxation. At avoided level crossings in the spectrum of electron-nuclear states of the Ho3+ ion, rates of nuclear spin-lattice relaxation increase due to quasi-resonant energy exchange between nuclei and paramagnetic ions, in contrast to the predominant role played by electronic cross-relaxation processes in the low-frequency ac-susceptibility.Comment: 27 pages total, 5 figures, accepted for publication, Eur. Phys. J.

    Levy stable distributions via associated integral transform

    Full text link
    We present a method of generation of exact and explicit forms of one-sided, heavy-tailed Levy stable probability distributions g_{\alpha}(x), 0 \leq x < \infty, 0 < \alpha < 1. We demonstrate that the knowledge of one such a distribution g_{\alpha}(x) suffices to obtain exactly g_{\alpha^{p}}(x), p=2, 3,... Similarly, from known g_{\alpha}(x) and g_{\beta}(x), 0 < \alpha, \beta < 1, we obtain g_{\alpha \beta}(x). The method is based on the construction of the integral operator, called Levy transform, which implements the above operations. For \alpha rational, \alpha = l/k with l < k, we reproduce in this manner many of the recently obtained exact results for g_{l/k}(x). This approach can be also recast as an application of the Efros theorem for generalized Laplace convolutions. It relies solely on efficient definite integration.Comment: 12 pages, typos removed, references adde

    Vortex-assisted photon counts and their magnetic field dependence in single-photon detectors

    Full text link
    We argue that photon counts in a superconducting nanowire single-photon detector (SNSPD) are caused by the transition from a current-biased metastable superconducting state to the normal state. Such a transition is triggered by vortices crossing the thin film superconducting strip from one edge to another due to the Lorentz force. Detector counts in SNSPDs may be caused by three processes: (a) a single incident photon with energy sufficient to break enough Cooper pairs to create a normal-state belt across the entire width of the strip (direct photon count), (b) thermally induced single-vortex crossing in the absence of photons (dark count), which at high bias currents releases the energy sufficient to trigger the transition to the normal state in a belt across the whole width of the strip, and (c) a single incident photon with insufficient energy to create a normal-state belt but initiating a subsequent single-vortex crossing, which provides the rest of the energy needed to create the normal-state belt (vortex-assisted single photon count). We derive the current dependence of the rate of vortex-assisted photon counts. The resulting photon count rate has a plateau at high currents close to the critical current and drops as a power-law with high exponent at lower currents. While the magnetic field perpendicular to the film plane does not affect the formation of hot spots by photons, it causes the rate of vortex crossings (with or without photons) to increase. We show that by applying a magnetic field one may characterize the energy barrier for vortex crossings and identify the origin of dark counts and vortex-assisted photon counts.Comment: 9 pages, 8 figures [v3: added extensive discussion of boundary condition of Fokker-Planck equation and magnitude of vortex crossing rate
    corecore