110 research outputs found

    Nuclear spin diffusion in the semiconductor TlTaS3

    Full text link
    We report on a 203Tl and 205Tl nuclear magnetic resonance study of the chain ternary semiconductor TlTaS3. We show that spin-lattice relaxation in this compound is driven by two contributions, namely by interactions of nuclear spins with thermally activated carriers and with localized electron spins. The latter mechanism dominates at lower temperature; at that, our measurements provide striking manifestation of the spin-diffusion-limited relaxation regime. The experimental data obtained allow us to estimate the spin diffusion coefficient.Comment: 15 pages, 5 figure

    Testing T Invariance in the Interaction of Slow Neutrons with Aligned Nuclei

    Full text link
    The study of five-fold (P even, T odd) correlation in the interaction of slow polarized neutrons with aligned nuclei is a possible way of testing the time reversal invariance due to the expected enhancement of T violating effects in compound resonances. Possible nuclear targets are discussed which can be aligned both dynamically as well as by the "brute force" method at low temperature. A statistical estimation is performed of the five-fold correlation for low lying p wave compound resonances of the 121^{121}Sb, 123^{123}Sb and 127^{127}I nuclei. It is shown that a significant improvement can be achieved for the bound on the intensity of the fundamental parity conserving time violating (PCTV) interaction.Comment: 22 pages, 5 figures, published versio

    Obituary: Professor Alexander Kessenikh (1932-2021)

    Get PDF
    On September 15, 2021, professor Alexander V. Kessenikh died. He was known for his works on nuclear magnetic resonance (NMR) and history of science

    Dynamic nuclear polarization and spin-diffusion in non-conducting solids

    Full text link
    There has been much renewed interest in dynamic nuclear polarization (DNP), particularly in the context of solid state biomolecular NMR and more recently dissolution DNP techniques for liquids. This paper reviews the role of spin diffusion in polarizing nuclear spins and discusses the role of the spin diffusion barrier, before going on to discuss some recent results.Comment: submitted to Applied Magnetic Resonance. The article should appear in a special issue that is being published in connection with the DNP Symposium help in Nottingham in August 200

    Enhancement of the Electron Spin Resonance of Single-Walled Carbon Nanotubes by Oxygen Removal

    Full text link
    We have observed a nearly fourfold increase in the electron spin resonance (ESR) signal from an ensemble of single-walled carbon nanotubes (SWCNTs) due to oxygen desorption. By performing temperature-dependent ESR spectroscopy both before and after thermal annealing, we found that the ESR in SWCNTs can be reversibly altered via the molecular oxygen content in the samples. Independent of the presence of adsorbed oxygen, a Curie-law (spin susceptibility 1/T\propto 1/T) is seen from \sim4 K to 300 K, indicating that the probed spins are finite-level species. For both the pre-annealed and post-annealed sample conditions, the ESR linewidth decreased as the temperature was increased, a phenomenon we identify as motional narrowing. From the temperature dependence of the linewidth, we extracted an estimate of the intertube hopping frequency; for both sample conditions, we found this hopping frequency to be \sim100 GHz. Since the spin hopping frequency changes only slightly when oxygen is desorbed, we conclude that only the spin susceptibility, not spin transport, is affected by the presence of physisorbed molecular oxygen in SWCNT ensembles. Surprisingly, no linewidth change is observed when the amount of oxygen in the SWCNT sample is altered, contrary to other carbonaceous systems and certain 1D conducting polymers. We hypothesize that physisorbed molecular oxygen acts as an acceptor (pp-type), compensating the donor-like (nn-type) defects that are responsible for the ESR signal in bulk SWCNTs.Comment: 14 pages, 7 figure

    The Flux-Line Lattice in Superconductors

    Full text link
    Magnetic flux can penetrate a type-II superconductor in form of Abrikosov vortices. These tend to arrange in a triangular flux-line lattice (FLL) which is more or less perturbed by material inhomogeneities that pin the flux lines, and in high-TcT_c supercon- ductors (HTSC's) also by thermal fluctuations. Many properties of the FLL are well described by the phenomenological Ginzburg-Landau theory or by the electromagnetic London theory, which treats the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft mainly because of the large magnetic penetration depth: The shear modulus of the FLL is thus small and the tilt modulus is dispersive and becomes very small for short distortion wavelength. This softness of the FLL is enhanced further by the pronounced anisotropy and layered structure of HTSC's, which strongly increases the penetration depth for currents along the c-axis of these uniaxial crystals and may even cause a decoupling of two-dimensional vortex lattices in the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause thermally activated depinning of the flux lines or of the 2D pancake vortices in the layers. Various phase transitions are predicted for the FLL in layered HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do not exist as postscript file
    corecore