1,996 research outputs found

    Future Measurements of Deeply Virtual Compton Scattering at HERMES

    Get PDF
    Prospects for future measurements of Deeply Virtual Compton Scattering at HERMES are studied using different simple models for parameterizations of generalized parton distributions (GPDs). Measurements of the lepton charge and lepton beam helicity asymmetry will yield important input for theoretical models towards the future extraction of GPDs.Comment: 12 pages, 7 figure

    Transversity Distribution and Polarized Fragmentation Function from Semi-inclusive Pion Electroproduction

    Get PDF
    A method is discussed to determine the hitherto unknown u-quark transversity distribution from a planned HERMES measurement of a single-spin asymmetry in semi-inclusive pion electroproduction off a transversely polarized target. Assuming u-quark dominance, the measurement yields the shapes of the transversity distribution and of the ratio of a polarized and the unpolarized u-quark fragmentation functions. The unknown relative normalization can be obtained by identifying the transversity distribution with the well-known helicity distribution at large x. The systematic uncertainty of the method is dominated by the assumption of u-quark dominance.Comment: 5 pages, 5 figures, revised version as will be published in EPJ

    Resonant tunneling through a macroscopic charge state in a superconducting SET transistor

    Full text link
    We predict theoretically and observe in experiment that the differential conductance of a superconducting SET transistor exhibits a peak which is a complete analogue in a macroscopic system of a standard resonant tunneling peak associated with tunneling through a single quantum state. In particular, in a symmetric transistor, the peak height is universal and equal to e2/2πℏe^2/2\pi \hbar. Away from the resonance we clearly observe the co-tunneling current which in contrast to the normal-metal transistor varies linearly with the bias voltage.Comment: 11 pages, 3 figures, Fig. 1 available upon request from the first autho

    Nonideal quantum detectors in Bayesian formalism

    Full text link
    The Bayesian formalism for a continuous measurement of solid-state qubits is derived for a model which takes into account several factors of the detector nonideality. In particular, we consider additional classical output and backaction noises (with finite correlation), together with quantum-limited output and backaction noises, and take into account possible asymmetry of the detector coupling. The formalism is first derived for a single qubit and then generalized to the measurement of entangled qubits.Comment: 10 page

    Spiral attractors as the root of a new type of "bursting activity" in the Rosenzweig-MacArthur model

    Full text link
    We study the peculiarities of spiral attractors in the Rosenzweig-MacArthur model, that describes dynamics in a food chain "prey-predator-superpredator". It is well-known that spiral attractors having a "teacup" geometry are typical for this model at certain values of parameters for which the system can be considered as slow-fast system. We show that these attractors appear due to the Shilnikov scenario, the first step in which is associated with a supercritical Andronov-Hopf bifurcation and the last step leads to the appearance of a homoclinic attractor containing a homoclinic loop to a saddle-focus equilibrium with two-dimension unstable manifold. It is shown that the homoclinic spiral attractors together with the slow-fast behavior give rise to a new type of bursting activity in this system. Intervals of fast oscillations for such type of bursting alternate with slow motions of two types: small amplitude oscillations near a saddle-focus equilibrium and motions near a stable slow manifold of a fast subsystem. We demonstrate that such type of bursting activity can be either chaotic or regular
    • …
    corecore