108 research outputs found

    Eigenoscillations of the Differentially Rotating Sun: I. 22-year, 4000-year, and quasi-biennial modes

    Get PDF
    Retrograde waves with frequencies much lower than the rotation frequency become trapped in the solar radiative interior. The eigenfunctions of the compressible, nonadiabatic, Rossby-like modes (ϵ\epsilon-mechanism and radiative losses taken into account) are obtained by an asymptotic method assuming a very small latitudinal gradient of rotation, without an arbitrary choice of other free parameters. An integral dispersion relation for the complex eigenfrequencies is derived as a solution of the boundary value problem. The discovered resonant cavity modes (called R-modes) are fundamentally different from the known r-modes: their frequencies are functions of the solar interior structure, and the reason for their existence is not related to geometrical effects. The most unstable R-modes are those with periods of 1--3 yr, 18--30 yr, and 1500--20000 yrs; these three separate period ranges are known from solar and geophysical data. The growing times of those modes which are unstable with respect to the ϵ\epsilon-mechanism are ≈102,103,\approx 10^2, 10^3, and 10510^5 years, respectively. The amplitudes of the R-modes are growing towards the center of the Sun. We discuss some prospects to develop the theory of R-modes as a driver of the dynamics in the convective zone which could explain, e.g., observed short-term fluctuations of rotation, a control of the solar magnetic cycle, and abrupt changes of terrestrial climate in the past.Comment: 17 pages, 6 figures, To appear in Astronomy and Astrophysic

    Electromagnetic effects of neutrinos in an electron gas

    Full text link
    We study the electromagnetic properties of a system that consists of an electron background and a neutrino gas that may be moving or at rest, as a whole, relative to the background. The photon self-energy for this system is characterized by the usual transverse and longitudinal polarization functions, and two additional ones which are the focus of our calculations, that give rise to birefringence and anisotropic effects in the photon dispersion relations. Expressions for them are obtained, which depend on the neutrino number densities and involve momentum integrals over the electron distribution functions, and are valid for any value of the photon momentum and general conditions of the electron gas. Those expressions are evaluated explicitly for several special cases and approximations which are generally useful in astrophysical and cosmological settings. Besides studying the photon dispersion relations, we consider the macroscopic electrodynamic equations for this system, which involve the standard dielectric and permeability constants plus two additional ones related to the photon self-energy functions. As an illustration, the equations are used to discuss the evolution of a magnetic field perturbation in such a medium. This particular phenomena has also been considered in a recent work by Semikoz and Sokoloff as a mechanism for the generation of large-scale magnetic fields in the Early Universe as a consequence of the neutrino-plasma interactions, and allows us to establish contact with a specific application in a well defined context, with a broader scope and from a very different point of view.Comment: Revtex 20 page

    Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography

    Full text link
    Iterative image reconstruction algorithms for optoacoustic tomography (OAT), also known as photoacoustic tomography, have the ability to improve image quality over analytic algorithms due to their ability to incorporate accurate models of the imaging physics, instrument response, and measurement noise. However, to date, there have been few reported attempts to employ advanced iterative image reconstruction algorithms for improving image quality in three-dimensional (3D) OAT. In this work, we implement and investigate two iterative image reconstruction methods for use with a 3D OAT small animal imager: namely, a penalized least-squares (PLS) method employing a quadratic smoothness penalty and a PLS method employing a total variation norm penalty. The reconstruction algorithms employ accurate models of the ultrasonic transducer impulse responses. Experimental data sets are employed to compare the performances of the iterative reconstruction algorithms to that of a 3D filtered backprojection (FBP) algorithm. By use of quantitative measures of image quality, we demonstrate that the iterative reconstruction algorithms can mitigate image artifacts and preserve spatial resolution more effectively than FBP algorithms. These features suggest that the use of advanced image reconstruction algorithms can improve the effectiveness of 3D OAT while reducing the amount of data required for biomedical applications

    Langmuir Wave Generation Through A Neutrino Beam Instability

    Get PDF
    A standard version of a kinetic instability for the generation of Langmuir waves by a beam of electrons is adapted to describe the analogous instability due to a beam of neutrinos. The interaction between a Langmuir wave and a neutrino is treated in the one-loop approximation to lowest order in an expansion in 1/MW21/M_W^2 in the standard electroweak model. It is shown that this kinetic instability is far too weak to occur in a suggested application to the reheating of the plasma behind a stalled shock in a type II supernova (SN). This theory is also used to test the validity of a previous analysis of a reactive neutrino beam instability and various shortcomings of this theory are noted. In particular, it is noted that relativistic plasma effects have a significant effect on the calculated growth rates, and that any theoretical description of neutrino-plasma interactions must be based directly on the electroweak theory. The basic scalings discussed in this paper suggest that a more complete investigation of neutrino-plasma processes should be undertaken to look for an efficient process capable of driving the stalled shock of a type II SN.Comment: 23 pages, incl. 5 postscript figure

    Dirac and Majorana neutrinos in matter

    Full text link
    We consider the matter effects on neutrinos moving in background on the basis of the corresponding quantum wave equations. Both Dirac and Majorana neutrino cases are discussed. The effects for Dirac neutrino reflection and trapping as well as neutrino-antineutrino annihilation and νν‾\nu\overline{\nu} pair creation in matter at the interface between two media with different densities are considered. The spin light of neutrino in matter is also discussed.Comment: 11 pages, 2 figures, in: Proceedings of the 5th International Conference on Non-Accelerator New Physics (Dubna, Russia, June 20-25, 2005). V2: typos correcte

    Radiative Neutrino Decay in Media

    Get PDF
    In this letter we introduce a new method to determine the radiative neutrino decay rate in the presence of a medium. Our approach is based on the generalisation of the optical theorem at finite temperature and density. Differently from previous works on this subject, our method allows to account for dispersive and dissipative electromagnetic properties of the medium. Some inconsistencies that are present in the literature are pointed-out and corrected here. We shortly discuss the relevance of our results for neutrino evolution in the early universe.Comment: 11 pages, 3 encapsulated figure
    • …
    corecore