2,261 research outputs found

    A Superlens Based on Metal-Dielectric Composites

    Full text link
    Pure noble metals are typically considered to be the materials of choice for a near-field superlens that allows subwavelength resolution by recovering both propagating and evanescent waves. However, a superlens based on bulk metal can operate only at a single frequency for a given dielectric host. In this Letter, it is shown that a composite metal-dielectric film, with an appropriate metal filling factor, can operate at practically any desired wavelength in the visible and near-infrared ranges. Theoretical analysis and simulations verify the feasibility of the proposed lens.Comment: 15 pages, 4 figure

    Translation of Nanoantenna Hot-Spots by a Metal-Dielectric Composite Superlens

    Get PDF
    We employ numerical simulations to show that highly localized, enhanced electromagnetic fields, also known as "hot spots," produced by a periodic array of silver nanoantennas can be spatially translated to the other side of a metal-dielectric composite superlens. The proposed translation of the hot spots enables surface-enhanced optical spectroscopy without the undesirable contact of molecules with metal, and thus it broadens and reinforces the potential applications of sensing based on field-enhanced fluorescence and surface-enhanced Raman scattering.Comment: 9 pages, 4 figure

    Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off

    Full text link
    Transparent conducting oxides have recently gained great attention as CMOS-compatible materials for applications in nanophotonics due to their low optical loss, metal-like behavior, versatile/tailorable optical properties, and established fabrication procedures. In particular, aluminum doped zinc oxide (AZO) is very attractive because its dielectric permittivity can be engineered over a broad range in the near infrared and infrared. However, despite all these beneficial features, the slow (> 100 ps) electron-hole recombination time typical of these compounds still represents a fundamental limitation impeding ultrafast optical modulation. Here we report the first epsilon-near-zero AZO thin films which simultaneously exhibit ultra-fast carrier dynamics (excitation and recombination time below 1 ps) and an outstanding reflectance modulation up to 40% for very low pump fluence levels (< 4 mJ/cm2) at the telecom wavelength of 1.3 {\mu}m. The unique properties of the demonstrated AZO thin films are the result of a low temperature fabrication procedure promoting oxygen vacancies and an ultra-high carrier concentration. As a proof-of-concept, an all-optical AZO-based plasmonic modulator achieving 3 dB modulation in 7.5 {\mu}m and operating at THz frequencies is numerically demonstrated. Our results overcome the traditional "modulation depth vs. speed" trade-off by at least an order of magnitude, placing AZO among the most promising compounds for tunable/switchable nanophotonics.Comment: 14 pages, 9 figures, 1 tabl

    Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Get PDF
    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm exhibit plasmon resonance in the biological transparency window. With dimensions optimized for efficient cellular uptake, the nanoparticles demonstrate a high photothermal conversion efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization.Comment: 17 pages, 4 figures, 1 abstract figur

    Trapped Rainbow Techniques for Spectroscopy on a Chip and Fluorescence Enhancement

    Full text link
    We report on the experimental demonstration of the broadband "trapped rainbow" in the visible range using arrays of adiabatically tapered optical nano waveguides. Being a distinct case of the slow light phenomenon, the trapped rainbow effect could be applied to optical signal processing, and sensing in such applications as spectroscopy on a chip, and to providing enhanced light-matter interactions. As an example of the latter applications, we have fabricated a large area array of tapered nano-waveguides, which exhibit broadband "trapped rainbow" effect. Considerable fluorescence enhancement due to slow light behavior in the array has been observed.Comment: 15 pages, 4 figures, Published in Applied Physics
    • …
    corecore