24,785 research outputs found

    Nucleon Form Factors from Generalized Parton Distributions

    Full text link
    We discuss the links between Generalized Parton Distributions (GPDs) and elastic nucleon form factors. These links, in the form of sum rules, represent powerful constraints on parametrizations of GPDs. A Regge parametrization for GPDs at small momentum transfer, is extended to the large momentum transfer region and it is found to describe the basic features of proton and neutron electromagnetic form factor data. This parametrization is used to estimate the quark contribution to the nucleon spin.Comment: 18 pages, 5 figures, replaced with published versio

    Electro-osmosis on anisotropic super-hydrophobic surfaces

    Full text link
    We give a general theoretical description of electro-osmotic flow at striped super-hydrophobic surfaces in a thin double layer limit, and derive a relation between the electro-osmotic mobility and hydrodynamic slip-length tensors. Our analysis demonstrates that electro-osmotic flow shows a very rich behavior controlled by slip length and charge at the gas sectors. In case of uncharged liquid-gas interface, the flow is the same or inhibited relative to flow in homogeneous channel with zero interfacial slip. By contrast, it can be amplified by several orders of magnitude provided slip regions are uniformly charged. When gas and solid regions are oppositely charged, we predict a flow reversal, which suggests a possibility of huge electro-osmotic slip even for electro-neutral surfaces. On the basis of these observations we suggest strategies for practical microfluidic mixing devices. These results provide a framework for the rational design of super-hydrophobic surfaces.Comment: 4 pages, 4 figures; submitted to PRL Revised version: several references added, typos corrected. Supplementary file was restructured, the second part of the original EPAPS was removed and is supposed to be published as a separate pape

    Strong Limit on a Variable Proton-to-Electron Mass Ratio from Molecules in the Distant Universe

    Full text link
    The Standard Model of particle physics assumes that the so-called fundamental constants are universal and unchanging. Absorption lines arising in molecular clouds along quasar sightlines offer a precise test for variations in the proton-to-electron mass ratio, mu, over cosmological time and distance scales. The inversion transitions of ammonia are particularly sensitive to mu compared to molecular rotational transitions. Comparing the available ammonia spectra observed towards the quasar B0218+357 with new, high-quality rotational spectra, we present the first detailed measurement of mu with this technique, limiting relative deviations from the laboratory value to |dmu/mu| < 1.8x10^{-6} (95% confidence level) at approximately half the Universe's current age - the strongest astrophysical constraint to date. Higher-quality ammonia observations will reduce both the statistical and systematic uncertainties in these measurements.Comment: Science, 20th June 2008. 22 pages, 5 figures (12 EPS files), 2 tables, including Supporting Online Material; v2: Corrected reference for laboratory mu-variation bound
    corecore