1,421 research outputs found

    Tunnelling between non-centrosymmetric superconductors with significant spin-orbit splitting studied theoretically within a two-band treatment

    Full text link
    Tunnelling between non-centrosymmetric superconductors with significant spin-orbit splitting is studied theoretically in a two-band treatment of the problem. We find that the critical Josephson current may be modulated by changing the relative angle between the vectors describing absence of inversion symmetry on each side of the junction. The presence of two gaps also results in multiple steps in the quasiparticle current-voltage characteristics. We argue that both these effects may help to determine the pairing states in materials like CePt3_3Si, UIr and Cd2_2Re2_2O7_7. We propose experimental tests of these ideas, including scanning tunnelling microscopy.Comment: 5 pages, 1 figure. Minor changes. Some new references added. Journal-ref. adde

    Unambiguous probe of parity-mixing of Cooper pairs in noncentrosymmetric superconductors

    Full text link
    We propose an experimental scheme to detect unambiguously parity-mxing of Cooper pairs in noncentrosymmetric superconductors, which utilizes crossed Andreev reflection processes between two oppositely spin-polarized normal metal leads and a noncentrosymmetric superconductor. It is demonstrated that a non-local conductance exhibits a clear signature of parity breaking of Cooper pairs, and thus, can be a direct probe for the parity-mixing.Comment: 4 pages, 2figure

    Zero-energy vortex bound states in noncentrosymmetric superconductors

    Full text link
    We consider bound states at the vortex core of a non-centrosymmetric superconductor. We show that, despite the mixing of singlet and triplet order parameters, zero energy states survive within certain parameter space as in vortices of some chiral p-wave states.Comment: 5 pages, no figure Latest modification, an overall factor i is removed in eq. (4

    NMR relaxation rate in non-centrosymmetric superconductors

    Full text link
    The spin-lattice relaxation rate of nuclear magnetic resonance in a clean superconductor without inversion center is calculated for arbitrary pairing symmetry and band structure, in the presence of strong spin-orbit coupling.Comment: 4 page

    Signature of superconducting states in cubic crystal without inversion symmetry

    Full text link
    The effects of absence of inversion symmetry on superconducting states are investigated theoretically. In particular we focus on the noncentrosymmetric compounds which have the cubic symmetry OO like Li2_2Pt3_3B. An appropriate and isotropic spin-orbital interaction is added in the Hamiltonian and it acts like a magnetic monopole in the momentum space. The consequent pairing wavefunction has an additional triplet component in the pseudospin space, and a Zeeman magnetic field B\bf{B} can induce a collinear supercurrent J\bf{J} with a coefficient κ(T)\kappa(T). The effects of anisotropy embedded in the cubic symmetry and the nodal superconducting gap function on κ(T)\kappa(T) are also considered. From the macroscopic perspectives, the pair of mutually induced J\bf{J} and magnetization M{\bf{M}} can affect the distribution of magnetic field in such noncentrosymmetric superconductors, which is studied through solving the Maxwell equation in the Meissner geometry as well as the case of a single vortex line. In both cases, magnetic fields perpendicular to the external ones emerge as a signature of the broken symmetry.Comment: 16 pages in pre-print forma

    Andreev reflection from non-centrosymmetric superconductors and Majorana bound state generation in half-metallic ferromagnets

    Full text link
    We study Andreev reflection at an interface between a half metal and a superconductor with spin-orbit interaction. While the absence of minority carriers in the half metal makes singlet Andreev reflection impossible, the spin-orbit interaction gives rise to triplet Andreev reflection, i.e., the reflection of a majority electron into a majority hole or vice versa. As an application of our calculation, we consider a thin half metal film or wire laterally attached to a superconducting contact. If the half metal is disorder free, an excitation gap is opened that is proportional to the spin-orbit interaction strength in the superconductor. For electrons with energy below this gap a lateral half-metal--superconductor contact becomes a perfect triplet Andreev reflector. We show that the system supports localized Majorana end states in this limit.Comment: 14 pages, 3 figure

    Topological Order and Non-Abelian Statistics in Noncentrosymmetric s-Wave Superconductors

    Full text link
    We demonstrate that in two-dimensional noncentrosymmetric s-wave superconductors under applied magnetic fields for a particular electron density, topological order emerges, and there exists a zero energy Majorana fermion mode in a vortex core, which obeys non-Abelian statistics, in analogy with p_x+ip_y superconductors, the Moore-Read Pfaffian quantum Hall state, and the gapped non-Abelian spin liquid phase of the Kitaev model.Comment: 4 pages, 2 figure

    Helical vortex phase in the non-centrosymmetric CePt_3Si

    Full text link
    We consider the role of magnetic fields on the broken inversion superconductor CePt_3Si. We show that upper critical field for a field along the c-axis exhibits a much weaker paramagnetic effect than for a field applied perpendicular to the c-axis. The in-plane paramagnetic effect is strongly reduced by the appearance of helical structure in the order parameter. We find that to get good agreement between theory and recent experimental measurements of H_{c2}, this helical structure is required. We propose a Josephson junction experiment that can be used to detect this helical order. In particular, we predict that Josephson current will exhibit a magnetic interference pattern for a magnetic field applied perpendicular to the junction normal. We also discuss unusual magnetic effects associated with the helical order.Comment: 5 pages, 2 figures, Accepted as Phys Rev. Lette

    Using Josephson junctions to determine the pairing state of superconductors without crystal inversion symmetry

    Full text link
    Theoretical studies of a planar tunnel junction between two superconductors with antisymmetric spin-orbit coupling are presented. The half-space Green's function for such a superconductor is determined. This is then used to derive expressions for the dissipative current and the Josephson current of the junction. Numerical results are presented in the case of the Rashba spin-orbit coupling, relevant to the much studied compound CePt3_3Si. Current-voltage diagrams, differential conductance and the critical Josephson current are presented for different crystallographic orientations and different weights of singlet and triplet components of the pairing state. The main conclusion is that Josephson junctions with different crystallographic orientations may provide a direct connection between unconventional pairing in superconductors of this kind and the absence of inversion symmetry in the crystal.Comment: 16 pages, 10 figure

    Spin fluctuations and superconductivity in noncentrosymmetric heavy fermion systems CeRhSi3_3 and CeIrSi3_3

    Full text link
    We study the normal and the superconducting properties in noncentrosymmetric heavy fermion superconductors CeRhSi3_3 and CeIrSi3_3. For the normal state, we show that experimentally observed linear temperature dependence of the resistivity is understood through the antiferromagnetic spin fluctuations near the quantum critical point (QCP) in three dimensions. For the superconducting state, we derive a general formula to calculate the upper critical field Hc2H_{c2}, with which we can treat the Pauli and the orbital depairing effect on an equal footing. The strong coupling effect for general electronic structures is also taken into account. We show that the experimentally observed features in Hc2∥z^H_{c2}\parallel \hat{z}, the huge value up to 30(T), the downward curvatures, and the strong pressure dependence, are naturally understood as an interplay of the Rashba spin-orbit interaction due to the lack of inversion symmetry and the spin fluctuations near the QCP. The large anisotropy between Hc2∥z^H_{c2}\parallel \hat{z} and Hc2⊥z^H_{c2}\perp \hat{z} is explained in terms of the spin-orbit interaction. Furthermore, a possible realization of the Fulde-Ferrell- Larkin-Ovchinnikov state for H⊥z^H\perp \hat{z} is studied. We also examine effects of spin-flip scattering processes in the pairing interaction and those of the applied magnetic field on the spin fluctuations. We find that the above mentioned results are robust against these effects. The consistency of our results strongly supports the scenario that the superconductivity in CeRhSi3_3 and CeIrSi3_3 is mediated by the spin fluctuations near the QCP.Comment: 21pages, 13figures, to be published in Phys. Rev.
    • …
    corecore