research

Using Josephson junctions to determine the pairing state of superconductors without crystal inversion symmetry

Abstract

Theoretical studies of a planar tunnel junction between two superconductors with antisymmetric spin-orbit coupling are presented. The half-space Green's function for such a superconductor is determined. This is then used to derive expressions for the dissipative current and the Josephson current of the junction. Numerical results are presented in the case of the Rashba spin-orbit coupling, relevant to the much studied compound CePt3_3Si. Current-voltage diagrams, differential conductance and the critical Josephson current are presented for different crystallographic orientations and different weights of singlet and triplet components of the pairing state. The main conclusion is that Josephson junctions with different crystallographic orientations may provide a direct connection between unconventional pairing in superconductors of this kind and the absence of inversion symmetry in the crystal.Comment: 16 pages, 10 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020