496 research outputs found

    Trends of the major porin gene (ompF) evolution

    Get PDF
    OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species

    Quantization of the Riemann Zeta-Function and Cosmology

    Get PDF
    Quantization of the Riemann zeta-function is proposed. We treat the Riemann zeta-function as a symbol of a pseudodifferential operator and study the corresponding classical and quantum field theories. This approach is motivated by the theory of p-adic strings and by recent works on stringy cosmological models. We show that the Lagrangian for the zeta-function field is equivalent to the sum of the Klein-Gordon Lagrangians with masses defined by the zeros of the Riemann zeta-function. Quantization of the mathematics of Fermat-Wiles and the Langlands program is indicated. The Beilinson conjectures on the values of L-functions of motives are interpreted as dealing with the cosmological constant problem. Possible cosmological applications of the zeta-function field theory are discussed.Comment: 14 pages, corrected typos, references and comments adde

    On the derivation of the t-J model: electron spectrum and exchange interactions in narrow energy bands

    Full text link
    A derivation of the t-J model of a highly-correlated solid is given starting from the general many-electron Hamiltonian with account of the non-orthogonality of atomic wave functions. Asymmetry of the Hubbard subbands (i.e. of ``electron'' and ``hole''cases) for a nearly half-filled bare band is demonstrated. The non-orthogonality corrections are shown to lead to occurrence of indirect antiferromagnetic exchange interaction even in the limit of the infinite on-site Coulomb repulsion. Consequences of this treatment for the magnetism formation in narrow energy bands are discussed. Peculiarities of the case of ``frustrated'' lattices, which contain triangles of nearest neighbors, are considered.Comment: 4 pages, RevTe

    Uniformization and an Index Theorem for Elliptic Operators Associated with Diffeomorphisms of a Manifold

    Full text link
    We consider the index problem for a wide class of nonlocal elliptic operators on a smooth closed manifold, namely differential operators with shifts induced by the action of an isometric diffeomorphism. The key to the solution is the method of uniformization: We assign to the nonlocal problem a pseudodifferential operator with the same index, acting in sections of an infinite-dimensional vector bundle on a compact manifold. We then determine the index in terms of topological invariants of the symbol, using the Atiyah-Singer index theorem.Comment: 16 pages, no figure

    Quantum Graphs II: Some spectral properties of quantum and combinatorial graphs

    Full text link
    The paper deals with some spectral properties of (mostly infinite) quantum and combinatorial graphs. Quantum graphs have been intensively studied lately due to their numerous applications to mesoscopic physics, nanotechnology, optics, and other areas. A Schnol type theorem is proven that allows one to detect that a point belongs to the spectrum when a generalized eigenfunction with an subexponential growth integral estimate is available. A theorem on spectral gap opening for ``decorated'' quantum graphs is established (its analog is known for the combinatorial case). It is also shown that if a periodic combinatorial or quantum graph has a point spectrum, it is generated by compactly supported eigenfunctions (``scars'').Comment: 4 eps figures, LATEX file, 21 pages Revised form: a cut-and-paste blooper fixe

    Elliptic operators on manifolds with singularities and K-homology

    Full text link
    It is well known that elliptic operators on a smooth compact manifold are classified by K-homology. We prove that a similar classification is also valid for manifolds with simplest singularities: isolated conical points and fibered boundary. The main ingredients of the proof of these results are: an analog of the Atiyah-Singer difference construction in the noncommutative case and an analog of Poincare isomorphism in K-theory for our singular manifolds. As applications we give a formula in topological terms for the obstruction to Fredholm problems on manifolds with singularities and a formula for K-groups of algebras of pseudodifferential operators.Comment: revised version; 25 pages; section with applications expande

    Analytic and Reidemeister torsion for representations in finite type Hilbert modules

    Full text link
    For a closed Riemannian manifold we extend the definition of analytic and Reidemeister torsion associated to an orthogonal representation of fundamental group on a Hilbert module of finite type over a finite von Neumann algebra. If the representation is of determinant class we prove, generalizing the Cheeger-M\"uller theorem, that the analytic and Reidemeister torsion are equal. In particular, this proves the conjecture that for closed Riemannian manifolds with positive Novikov-Shubin invariants, the L2 analytic and Reidemeister torsions are equal.Comment: 78 pages, AMSTe

    Band spectra of rectangular graph superlattices

    Full text link
    We consider rectangular graph superlattices of sides l1, l2 with the wavefunction coupling at the junctions either of the delta type, when they are continuous and the sum of their derivatives is proportional to the common value at the junction with a coupling constant alpha, or the "delta-prime-S" type with the roles of functions and derivatives reversed; the latter corresponds to the situations where the junctions are realized by complicated geometric scatterers. We show that the band spectra have a hidden fractal structure with respect to the ratio theta := l1/l2. If the latter is an irrational badly approximable by rationals, delta lattices have no gaps in the weak-coupling case. We show that there is a quantization for the asymptotic critical values of alpha at which new gap series open, and explain it in terms of number-theoretic properties of theta. We also show how the irregularity is manifested in terms of Fermi-surface dependence on energy, and possible localization properties under influence of an external electric field. KEYWORDS: Schroedinger operators, graphs, band spectra, fractals, quasiperiodic systems, number-theoretic properties, contact interactions, delta coupling, delta-prime coupling.Comment: 16 pages, LaTe

    Algebraic Geometry Approach to the Bethe Equation for Hofstadter Type Models

    Full text link
    We study the diagonalization problem of certain Hofstadter-type models through the algebraic Bethe ansatz equation by the algebraic geometry method. When the spectral variables lie on a rational curve, we obtain the complete and explicit solutions for models with the rational magnetic flux, and discuss the Bethe equation of their thermodynamic flux limit. The algebraic geometry properties of the Bethe equation on high genus algebraic curves are investigated in cooperationComment: 28 pages, Latex ; Some improvement of presentations, Revised version with minor changes for journal publicatio
    • …
    corecore