15 research outputs found

    Reactive oxygen species as a trigger of the infarct-limiting effects of early hypoxic preconditioning rat myocardium

    Get PDF
    It is believed that reactive oxygen species (ROS) are involved in the performance of this adaptive hepatoprotective effect phenomenon. However, the role of ROS in the signaling mechanism of the early hypoxic preconditioning (early HP) and the contribution of individual types of oxygen radicals in the infarct-limiting effect of early HP remains uncertain to the end. Objective was to investigate the role of various types of reactive oxygen species in the signaling mechanism of the infarct-limiting effect of early hypoxic preconditioning. We investigated the role of reactive oxygen species in the signaling mechanism of early HP in vivo. Adaptation of animals was conducted with 6 transient hypoxia-reoxygenation sessions before prolonged ischemia (45 min) and reperfusion (120 min). Low molecular weight antioxidants were administered 15 minutes prior to the HP. We found out that pretreatment with the nonselective antioxidant indirect action of N-(2-mercaptopropionyl)-glycine and "trap" of hydroxyl radicals 1,3-dimethylthiourea completely eliminated the infarct-limiting effect of adaptation. Administration of antioxidants tempol and trolox, as well as the use of N-(2-mercaptopropionyl)-glycine after HP had no effect on the protective effect of adaptation. Consequently, reactive oxygen species, including hydroxyl radical, operate as the trigger function in the signaling mechanism of early HP

    Роль вегетативной нервной системы в стресс-индуцированном повреждении сердца

    Get PDF
     Aim. To identify the role of the autonomic nervous system in stress cardiomyopathy in an experimental model of Takotsubo syndrome.Materials and methods. The study was carried out on 120 female Wistar rats. Stress modeling was performed by immobilizing animals on the back for 24 hours. Intact rats were used as controls. The rats were decapitated after termination of immobilization under general anesthesia with ether. Stress cardiomyopathy (SCM) was quantified by accumulation of 99mTc pyrophosphate radiopharmaceutical (99mTc PP) in the myocardium. The pharmacological agents used included the ganglionic blocker hexamethonium, administered five times at a dose of 20 mg / kg; guanethidine (50 mg / kg) administered subcutaneously once a day for three days, the last injection was performed 24 hours before immobilization; the muscarinic receptor antagonist atropine methyl nitrate (1 mg / kg); the α1-AR (adrenergic receptor) antagonist prazosin (2 mg / kg); the α2-AR antagonist yohimbine, administered at a dose of 2 mg / kg; the β1-AR antagonist nebivolol (1.2 mg / kg); the β2-AR antagonist ICI 118,551 (0.3 mg / kg); and the β3-AR antagonist L-748337 (0.1 mg / kg).Results. Three-day administration of guanethidine caused a decrease in the degree of 99mTc-PP accumulation in the heart by 35.9%. Hexamethonium did not affect the degree of SCM. The blockade of the muscarinic receptor caused an increase in accumulation of 99mTc-PP by 26.5%. Inhibition of α1-AR did not affect SCM. The blockade of α2-AR caused a 2.2-fold increase in the accumulation compared with stress control. The blockade of β1-AR reduced 99mTc-PP accumulation by 2.5 times. The blockade of β2-AR by ICI 118,551 increased the degree of 99mTcPP accumulation by 34.6%. Inhibition of β3-AR had no effect on SCM.Conclusion. The adrenergic system and β1-adrenergic receptor play an important role in the development of SCM. The parasympathetic nervous system ensures resistance of the heart to stress.Цель. Оценка роли вегетативной нервной системы в стресс-индуцированном повреждении сердца в экспериментальной модели синдрома такотсубо.Материалы и методы. Исследование выполнено на 120 самках крыс линии Вистар. Каждая группа животных состояла из 12 особей. Моделирование стресса осуществляли с помощью иммобилизации животных на спине в течение 24 ч. В качестве контроля использовали интактных особей. Крыс декапитировали после прекращения иммобилизации под общим эфирным наркозом. Количественную оценку стресс-индуцированного повреждения сердца (СИПС) осуществляли по аккумуляции радиофармпрепарата 99mTc-пирофосфата (99mTc-ПФ) в миокарде. Фармакологические агенты вводили внутрибрюшинно: ганглиоблокатор гексаметоний вводили пятикратно в дозе 20 мг/кг; гуанетидин (50 мг/кг) – подкожно 1 раз/сут в течение 3 сут, последнюю инъекцию делали за 24 ч до иммобилизации. Остальные препараты (антагонист М-холинорецепторов атропина метилнитрат (1 мг/кг); антагонист α1-адренорецепторов (АР) празозин (2 мг/кг); антагонист α2-АР йохимбин (2 мг/кг); антагонист β1-АР небиволол (1,2 мг/кг); антагонист β2-АР ICI 118,551 (0,3 мг/кг); антагонист β3-АР L-748337 (0,1 мг/кг)) вводили 2 раза/сут с интервалом 12 ч.Результаты. Трехдневное введение гуанетидина вызвало уменьшение степени аккумуляции 99mTc-ПФ в сердце на 35,9%. Гексаметоний не оказал влияние на степень СИПС. Блокада М-холинорецепторов вызвала усиление аккумуляции 99mTc-ПФ на 26,5%. Ингибирование α1-АР не оказало влияния на СИПС. Блокада α2-АР вызывала усиление аккумуляции в 2,2 раза по сравнению со стресс-контролем. Блокада β1-АР снизила степень аккумуляции 99mTc-ПФ в 2,5 раза. Блокада β2 АР ICI 118,551 увеличила степень аккумуляции 99mTc-ПФ на 34,6%. Ингибирование β3-АР не оказало эффекта на СИПС.Заключение. Симпатоадреналовая система и, в частности, β1-адренорецепторы играют важную роль в развитии СИПС. Парасимпатическая нервная система обеспечивает устойчивость сердца к стрессу

    Reactive Oxygen Species as Intracellular Signaling Molecules in the Cardiovascular System

    No full text
    Background: Redox signaling plays an important role in the lives of cells. This signaling not only becomes apparent in pathologies but is also thought to be involved in maintaining physiological homeostasis. Reactive Oxygen Species (ROS) can activate protein kinases: CaMKII, PKG, PKA, ERK, PI3K, Akt, PKC, PDK, JNK, p38. It is unclear whether it is a direct interaction of ROS with these kinases or whether their activation is a consequence of inhibition of phosphatases. ROS have a biphasic effect on the transport of Ca2+ in the cell: on one hand, they activate the sarcoplasmic reticulum Ca2+-ATPase, which can reduce the level of Ca2+ in the cell, and on the other hand, they can inactivate Ca2+-ATPase of the plasma membrane and open the cation channels TRPM2, which promote Ca2+-loading and subsequent apoptosis. ROS inhibit the enzyme PHD2, which leads to the stabilization of HIF-alpha and the formation of the active transcription factor HIF. Conclusion: Activation of STAT3 and STAT5, induced by cytokines or growth factors, may include activation of NADPH oxidase and enhancement of ROS production. Normal physiological production of ROS under the action of cytokines activates the JAK/STAT while excessive ROS production leads to their inhibition. ROS cause the activation of the transcription factor NF-kappa B. Physiological levels of ROS control cell proliferation and angiogenesis. ROS signaling is also involved in beneficial adaptations to survive ischemia and hypoxia, while further increases in ROS can trigger programmed cell death by the mechanism of apoptosis or autophagy. ROS formation in the myocardium can be reduced by moderate exercise
    corecore