22 research outputs found

    Regulating Labour Standards via Supply Chains: Combining Public/Private Interventions to Improve Workplace Compliance

    No full text
    Concern over global labour standards has led to a profusion of non-governmental forms of regulation. Systematic evaluation of these systems has been very limited to date. This article empirically explores an innovative system to regulate labour standards in the US garment industry combining public enforcement power and private monitoring, thereby drawing on different elements of global labour standards systems. We examine the impact of this system over time and in two distinct markets on employer compliance with minimum wage laws and find that these initiatives are associated with substantial reductions in minimum wage violations. The system therefore offers a useful model for international labour standards regulatory systems. Copyright Blackwell Publishing Ltd/London School of Economics 2007.

    Strong and Anisotropic Superexchange in the Single-Molecule Magnet (SMM) [(Mn6OsIII)-Os-III](3+): Promoting SMM Behavior through 3d-5d Transition Metal Substitution

    No full text
    Höke V, Stammler A, Bögge H, Schnack J, Glaser T. Strong and Anisotropic Superexchange in the Single-Molecule Magnet (SMM) [(Mn6OsIII)-Os-III](3+): Promoting SMM Behavior through 3d-5d Transition Metal Substitution. Inorganic Chemistry. 2014;53(1):257-268.The reaction of the in situ generated trinuclear triplesalen complex [(talen(t-Bu2))Mn-3(III)(solv)(n)](3+) with (Ph4P)(3)[Os-III(CN)(6)] and NaClO4 center dot H2O affords [(Mn6OsIII)-Os-III] (ClO4)(3) (= [{(talen(t-Bu2))Mn-3(III)}(2){Os-III(CN)(6)}](ClO4)(3)) in the presence of the oxidizing agent [(tacn)(2)Ni-III] (ClO4)(3) (tacn =1,4,7-triazacyclononane), while the reaction of [(talen(t-Bu2))-Mn-3(III)(solv)(n)](3+) with K-4[Os-II(CN)(6)] and NaClO4 center dot H2O yields [(Mn6OsII)-Os-III](ClO4)(2) under an argon atmosphere. The molecular structure of [(Mn6OsIII)-Os-III](3+) as determined by single-crystal X-ray diffraction is closely related to the already published [(Mn6Mc)-M-III](3+) complexes (M-c = Cr-III, Fe-III, Co-III, Mn-III). The half-wave potential of the Os-III/Os-II couple is E-1/2 = 0.07 V vs Fc(+)/Fc. The FT-IR and electronic absorption spectra of [(Mn6OsII)-Os-III](2+) and [(Mn6OsIII)-Os-III](3+) exhibit distinct features of dicationic and tricationic [(Mn6Mc)-M-III](n+) complexes, respectively. The dc magnetic data (mu(eff) vs T, M vs B, and VTVH) of [(Mn6OsII)-Os-III](2+) are successfully simulated by a full-matrix diagonalization of a spin-Hamiltonian including isotropic exchange, zero-field splitting with full consideration of the relative orientation of the D-tensors, and Zeeman interaction, indicating antiferromagnetic Mn-III-Mn-III interactions within the trinuclear triplesalen subunits (J(Mn-Mn)((1)) = -(0.53 +/- 0.01) cm(-1), (H) over cap (ex) = -2 Sigma(i(i)center dot(S) over cap (j)) as well as across the central Os-II ion (J(Mn-Mn)((2,cis)) = -(0.06 +/- 0.01) cm(-1), (J(Mn-Mn)((2,trans)) = -(0.15 +/- 0.01) cm(-1)), while D-Mn = -(3.9 +/- 0.1) cm(-1). The mu(eff) vs T data of [(Mn6OsIII)-Os-III](3+) are excellently reproduced assuming an anisotropic Ising-like Os-III-Mn-III superexchange with a nonzero component J(Os-Mn)((aniso)) = -(11.0 +/- 1.0) cm(-1) along the Os-Mn direction, while J(Mn-Mn) = -(0.9 +/- 0.1) cm(-1) and D-Mn = -(3.0 +/- 1.0) cm(-1). Alternating current measurements indicate a slower relaxation of the magnetization in the SMM [(Mn6OsIII)-Os-III](3+) compared to the 3d analogue [(Mn6FeIII)-Fe-III](3+) due to the stronger and anisotropic M-c-Mn-III exchange interaction
    corecore