1,029 research outputs found

    Dispersion interactions and reactive collisions of ultracold polar molecules

    Full text link
    Progress in ultracold experiments with polar molecules requires a clear understanding of their interactions and reactivity at ultra-low collisional energies. Two important theoretical steps in this process are the characterization of interaction potentials between molecules and the modeling of reactive scattering mechanism. Here, we report on the {\it abinitio} calculation of isotropic and anisotropic van der Waals interaction potentials for polar KRb and RbCs colliding with each other or with ultracold atoms. Based on these potentials and two short-range scattering parameters we then develop a single-channel scattering model with flexible boundary conditions. Our calculations show that at low temperatures (and in absence of an external electric field) the reaction rates between molecules or molecules with atoms have a resonant character as a function of the short-range parameters. We also find that both the isotropic and anisotropic van der Waals coefficients have significant contributions from dipole coupling to excited electronic states. Their values can differ dramatically from those solely obtained from the permanent dipole moment. A comparison with recently obtained reaction rates of fermionic 40^{40}K87^{87}Rb shows that the experimental data can not be explained by a model where the short-range scattering parameters are independent of the relative orbital angular momentum or partial wave.Comment: 15 pages, 12 figure

    The property of maximal transcendentality in the N=4 SYM

    Full text link
    We show results for the universal anomalous dimension gamma_{uni}(j) of Wilson twist-2 operators in the N=4 Supersymmetric Yang-Mills theory in the first three orders of perturbation theory. These expressions are obtained by extracting the most complicated contributions from the corresponding anomalous dimensions in QCD.Comment: 6 pages, published in the Proceedings of International Bogolyubov Conference "Problems of Theoretical and Mathematical Physics" (dedicated to the 100th anniversary of the birth of N.N. Bogolyubov (1909-1992)), Dubna, Russia, August 21 - 27, 2009 (Phys.Part.Nucl. in press

    Influence of molecular symmetry on strong-field ionization: Studies on ethylene, benzene, fluorobenzene, and chlorofluorobenzene

    Full text link
    Using the molecular strong-field approximation we consider the effects of molecular symmetry on the ionization of molecules by a strong, linearly polarized laser pulse. Electron angular distributions and total ionization yields are calculated as a function of the relative orientation between the molecule and the laser polarization. Our studies focus on ethylene (C2_2H4_4), benzene (C6_6H6_6), fluorobenzene (C6_6H5_5F), and ortho chlorofluorobenzene (1,2 C6_6H4_4ClF), the molecules representing four different point groups. The results are compared with experiments, when available, and with the molecular tunneling theory appropriately extended to non-linear polyatomic molecules. Our investigations show that the orientational dependence of ionization yields is primarily determined by the nodal surface structure of the molecular orbitals.Comment: 13 pages, 10 figures. Submitted to Physical Review

    Multiloop Calculations in the String-Inspired Formalism: The Single Spinor-Loop in QED

    Get PDF
    We use the worldline path-integral approach to the Bern-Kosower formalism for developing a new algorithm for calculation of the sum of all diagrams with one spinor loop and fixed numbers of external and internal photons. The method is based on worldline supersymmetry, and on the construction of generalized worldline Green functions. The two-loop QED β\beta -- function is calculated as an example.Comment: uuencoded ps-file, 20 pages, 2 figures, final revised version to appear in Phys. Rev.

    The Role of Lattice Coupling in Establishing Electronic and Magnetic Properties in Quasi-One-Dimensional Cuprates

    Full text link
    High resolution resonant inelastic x-ray scattering has been performed to reveal the role of lattice-coupling in a family of quasi-1D insulating cuprates, Ca2+5x_{2+5x}Y25x_{2-5x}Cu5_5O10_{10}. Site-dependent low energy excitations arising from progressive emissions of a 70 meV lattice vibrational mode are resolved for the first time, providing a direct measurement of electron-lattice coupling strength. We show that such electron-lattice coupling causes doping-dependent distortions of the Cu-O-Cu bond angle, which sets the intra-chain spin exchange interactions. Our results indicate that the lattice degrees of freedom are fully integrated into the electronic behavior in low dimensional systems.Comment: 5 pages, 4 figur

    Spin 1/2 Magnetic Impurity in a 2D Magnetic System Close to Quantum Critical Point

    Full text link
    We consider a magnetic impurity in a spin liquid state of a magnetic system which is close to the quantum phase transition to the magnetically ordered state. There is similarity between this problem and the Kondo problem. We derive the impurity Green's function, consider renormalizations of the magnetic moments of the impurity, calculate critical indexes for the magnetic susceptibilities and finally consider specific heat and magnetic interaction of two impurities.Comment: 9 pages, 9 figure

    Vacancy decay in endohedral atoms: the role of non-central position of the atom

    Full text link
    We demonstrate that the Auger decay rate in an endohedral atom is very sensitive to the atom's location in the fullerene cage. Two additional decay channels appear in an endohedral system: (a) the channel due to the change in the electric field at the atom caused by dynamic polarization of the fullerene electron shell by the Coulomb field of the vacancy, (b) the channel within which the released energy is transferred to the fullerene electron via the Coulomb interaction. % The relative magnitudes of the correction terms are dependent not only on the position of the doped atom but also on the transition energy \om. Additional enhancement of the decay rate appears for transitions whose energies are in the vicinity of the fullerene surface plasmons energies of high multipolarity. % It is demonstrated that in many cases the additional channels can dominate over the direct Auger decay resulting in pronounced broadening of the atomic emission lines. % The case study, carried out for Sc2+^{2+}@C806_{80}^{6-}, shows that narrow autoionizing resonances in an isolated Sc2+^{2+} within the range \om = 30... 45 eV are dramatically broadened if the ion is located strongly off-the-center. % Using the developed model we carry out quantitative analysis of the photoionization spectrum for the endohedral complex Sc3_3N@C80_{80} and demonstrate that the additional channels are partly responsible for the strong modification of the photoionization spectrum profile detected experimentally by M\"{u}ller et al. (J. Phys.: Conf. Ser. 88, 012038 (2008)).Comment: 32 pages, 11 figure

    Doping Dependence of Collective Spin and Orbital Excitations in Spin 1 Quantum Antiferromagnet La2x_{2-x}Srx_xNiO4_4 Observed by X-rays

    Full text link
    We report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to \emph{collective} magnetic excitations in S=1S=1 systems by probing the Ni L3L_3-edge of La2x_{2-x}Srx_xNiO4_4 (x=0,0.33,0.45x = 0, 0.33, 0.45). The magnetic excitation peak is asymmetric, indicating the presence of single and multi spin-flip excitations. As the hole doping level is increased, the zone boundary magnon energy is suppressed at a much larger rate than that in hole doped cuprates. Based on the analysis of the orbital and charge excitations observed by RIXS, we argue that this difference is related to the orbital character of the doped holes in these two families. This work establishes RIXS as a probe of fundamental magnetic interactions in nickelates opening the way towards studies of heterostructures and ultra-fast pump-probe experiments.Comment: 8 pages, 4 figures, see ancillary files for the supplemental materia

    Charge and orbital order in half-doped manganites

    Full text link
    An explanation is given for the charge order, orbital order and insulating state observed in half-doped manganese oxides, such as Nd1/2_{1/2}Sr1/2_{1/2}MnO3_{3}. The competition between the kinetic energy of the electrons and the magnetic exchange energy drives the formation of effectively one-dimensional ferromagnetic zig-zag chains. Due to a topological phase factor in the hopping, the chains are intrinsically insulating and orbital-ordered. Most surprisingly, the strong Coulomb interaction between electrons on the same Mn-ion leads to the experimentally observed charge ordering. For doping less than 1/2 the system is unstable towards phase separation into a ferromagnetic metallic and charge-ordered insulating phase.Comment: To appear in Phys. Rev. Lett., 4 pages, 4 figure
    corecore