We demonstrate that the Auger decay rate in an endohedral atom is very
sensitive to the atom's location in the fullerene cage. Two additional decay
channels appear in an endohedral system: (a) the channel due to the change in
the electric field at the atom caused by dynamic polarization of the fullerene
electron shell by the Coulomb field of the vacancy, (b) the channel within
which the released energy is transferred to the fullerene electron via the
Coulomb interaction. % The relative magnitudes of the correction terms are
dependent not only on the position of the doped atom but also on the transition
energy \om. Additional enhancement of the decay rate appears for transitions
whose energies are in the vicinity of the fullerene surface plasmons energies
of high multipolarity. % It is demonstrated that in many cases the additional
channels can dominate over the direct Auger decay resulting in pronounced
broadening of the atomic emission lines. % The case study, carried out for
Sc2+@C806−, shows that narrow autoionizing resonances in an
isolated Sc2+ within the range \om = 30... 45 eV are dramatically
broadened if the ion is located strongly off-the-center. % Using the developed
model we carry out quantitative analysis of the photoionization spectrum for
the endohedral complex Sc3N@C80 and demonstrate that the additional
channels are partly responsible for the strong modification of the
photoionization spectrum profile detected experimentally by
M\"{u}ller et al. (J. Phys.: Conf. Ser. 88, 012038 (2008)).Comment: 32 pages, 11 figure