612 research outputs found

    Heterogeneous reactions with NaCl in the El Chichon volcanic aerosols

    Get PDF
    Previous investigations of the effects of the 1982 eruption of the El Chichon volcano could not explain all the observations of changes in O_3, HCl, NO and NO_2 simultaneously without proposing unproven chemical reactions. Since reactions between solid NaCl and gaseous ClNO_3 and N_2O_5 rapidly produce photochemically active chlorine species and solid NaNO_3 in laboratory experiments, we suggest that these reactions could have occurred with the NaCl observed to be present in the El Chichon sulfuric acid aerosols. As a consequence, we predict that HCl should increase substantially, while NO_x should decrease, in agreement with the measurements after the eruption. Ozone should only be slightly affected by these reactions. Reactions between solid NaCl and the acids H_2SO_4 and HNO_3 might prove to be important, but we lack sufficient evidence regarding their efficiency and the presence of HNO_3 in the aerosols to be more conclusive

    El Chichon Volcanic Aerosols: Impact of Radiative, Thermal, and Chemical Perturbations

    Get PDF
    We examine the consequences of the eruption of the El Chichon volcano on the Earth's stratospheric chemistry. Formed after the eruption, the volcanic aerosol cloud, with a peak particle density at 27 km, was very efficient at altering the radiation field. The results of a one-dimensional radiative transfer model show that the total radiation increased by 8% within the aerosol layer longward of 3000 Å. At certain altitudes and wavelengths below 3000 Å, the total radiation decreased by 15%. Consequently, there are changes in the photolysis rates obtained with a one-dimensional photochemical model: for example, O_2 photodissociation rate constants decrease by 10%, while O_3 photodissociation rate constants increase by a comparable amount. A combination of this radiation change and the effect of a temperature variation of a few degrees causes the abundance of O_3 to decrease by 7% at 24 km, in good agreement with the Solar Backscattered Ultraviolet experiment (SBUV) measurements of a 5–10% decrease. The combined radiative and thermal perturbations on the concentrations of O, O(1D), OH, HO_2, H_2O_2, NO, NO_2, NO_3, N_2O_5, HNO_3, HO_2NO_2, Cl, ClO, ClO_2, HOCl, ClNO_3, and HCl are computed and presented in detail. However, these changes as calculated are insufficient to explain the observations of significant decreases in NO and NO_2 and increases in HCl. A heterogeneous reaction catalyzed by aerosol surfaces which transforms ClNO_3 into HCl provides a pathway for sequestering NO_x, and at the same time reduces ClNO_3 in favor of HCl. The inclusion of this reaction in the model leads to a satisfactory single-step explanation of the otherwise puzzling observations of NO, NO_2, and HCl. The observed lack of change in HNO_3 cannot be explained by this hypothesis. The effects of a number of heterogenous reactions, some believed to be important for the Antarctic stratosphere, have been assessed with our model. We also examine the hypothesis of direct injection of gases from the volcano into the stratosphere. Only an unrealistically large injection (60% column increase above 12 km) results in an HCl increase in agreement with observations. An equally large water injection decreases HCl, and decreases the NO and NO_2 by as much as 20%, but still does not simulate the observed NO_x decrease

    Thermoelastic Noise and Homogeneous Thermal Noise in Finite Sized Gravitational-Wave Test Masses

    Get PDF
    An analysis is given of thermoelastic noise (thermal noise due to thermoelastic dissipation) in finite sized test masses of laser interferometer gravitational-wave detectors. Finite-size effects increase the thermoelastic noise by a modest amount; for example, for the sapphire test masses tentatively planned for LIGO-II and plausible beam-spot radii, the increase is less than or of order 10 per cent. As a side issue, errors are pointed out in the currently used formulas for conventional, homogeneous thermal noise (noise associated with dissipation which is homogeneous and described by an imaginary part of the Young's modulus) in finite sized test masses. Correction of these errors increases the homogeneous thermal noise by less than or of order 5 per cent for LIGO-II-type configurations.Comment: 10 pages and 3 figures; RevTeX; submitted to Physical Review

    Information Reusability, Competition and Bank Asset Quality

    Get PDF
    The paper explains the recent decline in bank asset quality using the notion of information reusability. Banks are viewed as information processors; they exist because of their advantage in extracting the surplus associated with the reusability of borrower-specific information. It is shown that a bank's incentive to screen loan applicants, and hence maintain the quality of its assets, depends on the surplus this screening can produce, which in turn depends on information reusability. Two recent changes in banks' operating environment are increased competition and greater temporal volatility in borrower credit risks. The former has directly reduced banks' informational surplus while the latter has impaired information reusability. Hence screening expenditures have been reduced and the diminution of screening has lowered the quality of bank assets. It is also shown that an increase in deposit insurance premia has an effect similar to that of narrowing interest spreads and therefore will result in reduced asset screening and impaired asset quality.

    Head-on collisions of binary white dwarf--neutron stars: Simulations in full general relativity

    Full text link
    We simulate head-on collisions from rest at large separation of binary white dwarf -- neutron stars (WDNSs) in full general relativity. Our study serves as a prelude to our analysis of the circular binary WDNS problem. We focus on compact binaries whose total mass exceeds the maximum mass that a cold degenerate star can support, and our goal is to determine the fate of such systems. A fully general relativistic hydrodynamic computation of a realistic WDNS head-on collision is prohibitive due to the large range of dynamical time scales and length scales involved. For this reason, we construct an equation of state (EOS) which captures the main physical features of NSs while, at the same time, scales down the size of WDs. We call these scaled-down WD models "pseudo-WDs (pWDs)". Using pWDs, we can study these systems via a sequence of simulations where the size of the pWD gradually increases toward the realistic case. We perform two sets of simulations; One set studies the effects of the NS mass on the final outcome, when the pWD is kept fixed. The other set studies the effect of the pWD compaction on the final outcome, when the pWD mass and the NS are kept fixed. All simulations show that 14%-18% of the initial total rest mass escapes to infinity. All remnant masses still exceed the maximum rest mass that our cold EOS can support (1.92 solar masses), but no case leads to prompt collapse to a black hole. This outcome arises because the final configurations are hot. All cases settle into spherical, quasiequilibrium configurations consisting of a cold NS core surrounded by a hot mantle, resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD compactions, we predict that the likely outcome of a head-on collision of a realistic, massive WDNS system will be the formation of a quasiequilibrium Thorne-Zytkow-like object.Comment: 24 pages, 14 figures, matches PRD published version, tests of HRSC schemes with piecewise polytropes adde

    General Relativistic Simulations of Slowly and Differentially Rotating Magnetized Neutron Stars

    Get PDF
    We present long-term (~10^4 M) axisymmetric simulations of differentially rotating, magnetized neutron stars in the slow-rotation, weak magnetic field limit using a perturbative metric evolution technique. Although this approach yields results comparable to those obtained via nonperturbative (BSSN) evolution techniques, simulations performed with the perturbative metric solver require about 1/4 the computational resources at a given resolution. This computational efficiency enables us to observe and analyze the effects of magnetic braking and the magnetorotational instability (MRI) at very high resolution. Our simulations demonstrate that (1) MRI is not observed unless the fastest-growing mode wavelength is resolved by more than about 10 gridpoints; (2) as resolution is improved, the MRI growth rate converges, but due to the small-scale turbulent nature of MRI, the maximum growth amplitude increases, but does not exhibit convergence, even at the highest resolution; and (3) independent of resolution, magnetic braking drives the star toward uniform rotation as energy is sapped from differential rotation by winding magnetic fields.Comment: 21 pages, 11 figures, published in Phys.Rev.

    Enhancement of Atmospheric Radiation by an Aerosol Layer

    Get PDF
    The presence of a stratospheric haze layer may produce increases in both the actinic flux and the irradiance below this layer. Such haze layers result from the injection of aerosol-forming material into the stratosphere by volcanic eruptions. Simple heuristic arguments show that the increase in flux below the haze layer, relative to a clear sky case, is a consequence of “photon trapping.” We explore the magnitude of these flux perturbations, as a function of aerosol properties and illumination conditions, with a new radiative transfer model that can accurately compute fluxes in an inhomogeneous atmosphere with nonconservative scatterers having arbitrary phase function. One calculated consequence of the El Chichon volcanic eruption is an increase in the midday surface actinic flux at 20°N latitude, summer, by as much as 45% at 2900 Å. This increase in flux in the UV-B wavelength range was caused entirely by aerosol scattering, without any reduction in the overhead ozone column

    Role of MRP transporters in regulating antimicrobial drug inefficacy and oxidative stress-induced pathogenesis during HIV-1 and TB infections.

    Get PDF
    Multi-Drug Resistance Proteins (MRPs) are members of the ATP binding cassette (ABC) drug-efflux transporter superfamily. MRPs are known to regulate the efficacy of a broad range of anti-retroviral drugs (ARV) used in highly active antiretroviral therapy (HAART) and antibacterial agents used in Tuberculus Bacilli (TB) therapy. Due to their role in efflux of glutathione (GSH) conjugated drugs, MRPs can also regulate cellular oxidative stress, which may contribute to both HIV and/or TB pathogenesis. This review focuses on the characteristics, functional expression, and modulation of known members of the MRP family in HIV infected cells exposed to ARV drugs and discusses their known role in drug-inefficacy in HIV/TB-induced dysfunctions. Currently, nine members of the MRP family (MRP1-MRP9) have been identified, with MRP1 and MRP2 being the most extensively studied. Details of the other members of this family have not been known until recently, but differential expression has been documented in inflammatory tissues. Researchers have found that the distribution, function, and reactivity of members of MRP family vary in different types of lymphocytes and macrophages, and are differentially expressed at the basal and apical surfaces of both endothelial and epithelial cells. Therefore, the prime objective of this review is to delineate the role of MRP transporters in HAART and TB therapy and their potential in precipitating cellular dysfunctions manifested in these chronic infectious diseases. We also provide an overview of different available options and novel experimental strategies that are being utilized to overcome the drug resistance and disease pathogenesis mediated by these membrane transporters

    Model documentation, chapter 4

    Get PDF
    The modeling groups are listed along with a brief description of the respective models

    Role of MRP transporters in regulating antimicrobial drug inefficacy and oxidative stress-induced pathogenesis during HIV-1 and TB infections

    Get PDF
    Multi-Drug Resistance Proteins (MRPs) are members of the ATP binding cassette (ABC) drug-efflux transporter superfamily. MRPs are known to regulate the efficacy of a broad range of anti-retroviral drugs (ARV) used in highly active antiretroviral therapy (HAART) and antibacterial agents used in Tuberculus Bacilli (TB) therapy. Due to their role in efflux of glutathione (GSH) conjugated drugs, MRPs can also regulate cellular oxidative stress, which may contribute to both HIV and/or TB pathogenesis. This review focuses on the characteristics, functional expression, and modulation of known members of the MRP family in HIV infected cells exposed to ARV drugs and discusses their known role in drug-inefficacy in HIV/TB-induced dysfunctions. Currently, nine members of the MRP family (MRP1-MRP9) have been identified, with MRP1 and MRP2 being the most extensively studied. Details of the other members of this family have not been known until recently, but differential expression has been documented in inflammatory tissues. Researchers have found that the distribution, function, and reactivity of members of MRP family vary in different types of lymphocytes and macrophages, and are differentially expressed at the basal and apical surfaces of both endothelial and epithelial cells. Therefore, the prime objective of this review is to delineate the role of MRP transporters in HAART and TB therapy and their potential in precipitating cellular dysfunctions manifested in these chronic infectious diseases. We also provide an overview of different available options and novel experimental strategies that are being utilized to overcome the drug resistance and disease pathogenesis mediated by these membrane transporters
    • …
    corecore