44,120 research outputs found

    Inclusive Decays of Bottom Hadrons in New Formulation of Heavy Quark Effective Field Theory

    Full text link
    We apply the new formulation of heavy quark effective field theory (HQEFT) to the inclusive decays of bottom hadrons. The long-term ambiguity of using heavy quark mass or heavy hadron mass for inclusive decays is clarified within the framework of the new formulation of HQEFT. The 1/mb1/m_b order corrections are absent and contributions from 1/mb21/m_b^2 terms are calculated in detail. This enables us to reliably extract the important CKM matrix element ∣Vcb∣|V_{cb}| from the inclusive semileptonic decay rates. The resulting lifetime ratios τ(Bs0)/τ(B0)\tau(B^0_s)/\tau(B^0) and τ(Λb)/τ(B0)\tau(\Lambda_b)/\tau(B^0) are found to well agree with the experimental data. We also calculate in detail the inclusive semileptonic branching ratios and the ratios of the τ\tau and β\beta decay rates as well as the charm countings in the B0B^0, Bs0B^0_s and Λb\Lambda_b systems. For B0B^0 decays, all the observables are found to be consistent with the experimental data. More precise data for the B0B^0 decays and further experimental measurements for the Bs0B^0_s and Λb\Lambda_b systems will be very useful for testing the framework of new formulation of HQEFT at the level of higher order corrections.Comment: 20 pages, RevTex, 8 figures, 3 tables, revised version with `dressed heavy quark' being addressed, to be published in Int. J. Mod. Phys.

    Notch effects in tensile behavior of AM60 magnesium alloys

    Get PDF
    The deformation and failure behavior of an AM60 magnesium alloy was investigated using tensile test on circumferentially notched specimens with different notch radii. The strain and stress triaxiality corresponding to the failure point were evaluated using both analytical and finite element analyses. Combining with systematical observations of the fracture surfaces, it is concluded that deformation and failure of AM60 magnesium alloy are notch (constraint) sensitive. The failure mechanisms change from ductile tearing to quasi cleavage with the increase of constraint

    |V_ub| and |V_cb|, Charm Counting and Lifetime Differences in Inclusive Bottom Hadron Decays

    Full text link
    Inclusive bottom hadron decays are analyzed based on the heavy quark effective field theory (HQEFT). Special attentions in this paper are paid to the b\to u transitions and nonspectator effects. As a consequence, the CKM quark mixing matrix elements |V_ub| and |V_cb| are reliably extracted from the inclusive semileptonic decays B\to X_u e \nu and B\to X_c e \nu. Various observables, such as the semileptonic branch ratio B_SL, the lifetime differences among B^-, B^0, B_s and \Lambda_b hadrons, the charm counting n_c, are predicted and found to be consistent with the present experimental data.Comment: 20 pages, Revtex, 4 figures and 2 table

    Generalized Darboux transformations for the KP equation with self-consistent sources

    Full text link
    The KP equation with self-consistent sources (KPESCS) is treated in the framework of the constrained KP equation. This offers a natural way to obtain the Lax representation for the KPESCS. Based on the conjugate Lax pairs, we construct the generalized binary Darboux transformation with arbitrary functions in time tt for the KPESCS which, in contrast with the binary Darboux transformation of the KP equation, provides a non-auto-B\"{a}cklund transformation between two KPESCSs with different degrees. The formula for N-times repeated generalized binary Darboux transformation is proposed and enables us to find the N-soliton solution and lump solution as well as some other solutions of the KPESCS.Comment: 20 pages, no figure

    Quantization of a Friedmann-Robertson-Walker model in N=1 Supergravity with Gauged Supermatter

    Get PDF
    The theory of N = 1 supergravity with gauged supermatter is studied in the context of a k = + 1 Friedmann minisuperspace model. It is found by imposing the Lorentz and supersymmetry constraints that there are {\seveni no} physical states in the particular SU(2) model studied.Comment: 5 pages, Talk at the 1st Mexican School in Gravitation and mathematical physics, Guanajuato, Mexico, December 12-16 199

    Nonperturbative Determination of Heavy Meson Bound States

    Get PDF
    In this paper we obtain a heavy meson bound state equation from the heavy quark equation of motion in heavy quark effective theory (HQET) and the heavy meson effective field theory we developed very recently. The bound state equation is a covariant extention of the light-front bound state equation for heavy mesons derived from light-front QCD and HQET. We determine the covariant heavy meson wave function variationally by minimizing the binding energy Λˉ\bar{\Lambda}. Subsequently the other basic HQET parameters λ1\lambda_1 and λ2\lambda_2, and the heavy quark masses mbm_b and mcm_c can also be consistently determined.Comment: 15 pages, 1 figur

    QCD factorization for B -> PP

    Get PDF
    In this work, we give a detailed discussion for QCD factorization involved the complete chirally enhanced power corrections for B decays to two light pseudoscalar mesons, and present some detailed calculations of radiative corrections at the order of alpha_s. We point out that the infrared finiteness of the vertex corrections in the chirally enhanced power corrections requires twist-3 light-cone distribution amplitudes (LCDAs) of the light pseudoscalar symmetric. However, even in the symmetric condition, there is also logarithmic divergence from the endpoints of the twist-3 LCDAs in the hard spectator scattering. We point out that the decay amplitudes of B --> PP predicted by QCD factorization are really free of the renormalization scale dependence, at least at the order of alpha_s. At last, we briefly compare the QCD factorization with the generalized factorization and PQCD method.Comment: 31 pages, 3 eps figure

    The Fundamental Plane of Gamma-ray Globular Clusters

    Get PDF
    We have investigated the properties of a group of γ\gamma-ray emitting globular clusters (GCs) which have recently been uncovered in our Galaxy. By correlating the observed γ\gamma-ray luminosities LγL_{\gamma} with various cluster properties, we probe the origin of the high energy photons from these GCs. We report LγL_{\gamma} is positively correlated with the encounter rate Γc\Gamma_{c} and the metalicity [Fe/H]\left[{\rm Fe/H}\right] which place an intimate link between the gamma-ray emission and the millisecond pulsar population. We also find a tendency that LγL_{\gamma} increase with the energy densities of the soft photon at the cluster location. Furthermore, the two-dimensional regression analysis suggests that LγL_{\gamma}, soft photon densities, and Γc\Gamma_{c}/[Fe/H]\left[{\rm Fe/H}\right] possibly span fundamental planes which potentially provide better predictions for the γ\gamma-ray properties of GCs.Comment: 17 pages, 4 figures, 3 tables, published in Ap

    Transport properties for a Luttinger liquid wire with Rashba spin-orbit coupling and Zeeman splitting

    Full text link
    We study the transport properties for a Luttinger-liquid (LL) quantum wire in the presence of both Rashba spin-orbit coupling (SOC) and a weak external in-plane magnetic field. The bosonized Hamiltonian of the system with an externally applied longitudinal electric field is established. And then the equations of motion for the bosonic phase fields are solved in the Fourier space, with which the both charge and spin conductivities for the system are calculated analytically based on the linear response theory. Generally, the ac conductivity is an oscillation function of the strengths of electron-electron interaction, Rashba SOC and magnetic field, as well as the driving frequency and the measurement position in the wire. Through analysis with some examples it is demonstrated that the modification on the conductivity due to electron-electron interactions is more remarkable than that due to SOC, while the effects of SOC and Zeeman splitting on the conductivity are very similar. The spin-polarized conductivities for the system in the absence of Zeeman effect or SOC are also discussed, respectively. The ratio of the spin-polarized conductivities σ↑/σ↓\sigma_\uparrow/\sigma_\downarrow is dependent of the electron-electron interactions for the system without SOC, while it is independent of the electron-electron interactions for the system without Zeeman splitting.Comment: 10 pages, 8 figure

    Vertical Diffusivities of Active and Passive Tracers

    Get PDF
    The climate models that include a carbon-cycle need the vertical diffusivity of a passive tracer. Since an expression for the latter is not available, it has been common practice to identify it with that of salt. The identification is questionable since T, S are active, not passive tracers. We present the first derivation of the diffusivity of a passive tracer in terms of Ri (Richardson number) and Rq (density ratio, ratio of salinity over temperature z-gradients). The following results have emerged: (a) The passive tracer diffusivity is an algebraic function of Ri, Rq. (b) In doubly stable regimes (DS, partial derivative of T with respect to z > 0, partial derivative of S with respect to z 0. (c) In DC regimes (diffusive convection, partial derivative of T with respect to z 1), the passive scalar diffusivity is larger than that of salt. At Ri = O(1), it can be more than twice as large. (d) In SF regimes (salt fingers, partial derivative of T with respect to z > 0, partial derivative of S with respect to z > 0, Rq < 1), the passive scalar diffusivity is smaller than that of salt. At Ri = O(1), it can be less than half of it. (e) The passive tracer diffusivity predicted at the location of NATRE (North Atlantic Tracer Release Experiment) is discussed. (f) Perhaps the most relevant conclusion is that the common identification of the tracer diffusivity with that of salt is valid only in DS regimes. In the Southern Ocean, where there is the largest CO2 absorption, the dominant regime is diffusive convection discussed in (c) above
    • …
    corecore