10 research outputs found

    Metabolic profiling of HepG2 cells incubated with S(−) and R(+) enantiomers of anti-coagulating drug warfarin

    Get PDF
    Warfarin is a commonly prescribed oral anticoagulant with narrow therapeutic index. It achieves anti-coagulating effects by interfering with the vitamin K cycle. Warfarin has two enantiomers, S(−) and R(+) and undergoes stereoselective metabolism, with the S(−) enantiomer being more effective. We reported the intracellular metabolic profile in HepG2 cells incubated with S(−) and R(+) warfarin by GCMS. Chemometric method PCA was applied to analyze the individual samples. A total of 80 metabolites which belong to different categories were identified. Two batches of experiments (with and without the presence of vitamin K) were designed. In samples incubated with S(−) and R(+) warfarin, glucuronic acid showed significantly decreased in cells incubated with R(+) warfarin but not in those incubated with S(−) warfarin. It may partially explain the lower bio-activity of R(+) warfarin. And arachidonic acid showed increased in cells incubated with S(−) warfarin but not in those incubated with R(+) warfarin. In addition, a number of small molecules involved in γ-glutamyl cycle displayed ratio variations. Intracellular glutathione detection further validated the results. Taken together, our findings provided molecular evidence on a comprehensive metabolic profile on warfarin-cell interaction which may shed new lights on future improvement of warfarin therapy

    Biochemical properties of human dehydrogenase/reductase (SDR family) member 7.

    No full text
    Dehydrogenase/reductase (SDR family) member 7 (DHRS7, retSDR4, SDR34C1) is a previously uncharacterized member of the short-chain dehydrogenase/reductase (SDR) superfamily. While human SDR members are known to play an important role in various (patho)biochemical pathways including intermediary metabolism and biotransformation of xenobiotics, only 20% of them are considered to be well characterized. Based on phylogenetic tree and SDR sequence clusters analysis DHRS7 is a close relative to well-known SDR member 11ÎČ-hydroxysteroid dehydrogenase 1 (11ÎČ-HSD1) that participates in metabolism of endogenous and xenobiotic substances with carbonyl group. The aim of present study is to determine the basic biochemical properties of DHRS7 and its possible involvement in metabolism of substrates with carbonyl group. For the first time the computational predictions of this membrane protein and membrane topology were experimentally confirmed. DHRS7 has been demonstrated to be an integral protein facing the lumen of the endoplasmic reticulum with lack of posttranscriptional glycosylation modification. Subsequently, NADP(H) cofactor preference and enzymatic reducing activity of DHRS7 was determined towards endogenous substrates with a steroid structure (cortisone, 4-androstene-3,17-dion) and also toward relevant exogenous substances bearing a carbonyl group harmful to human health (1,2-naphtoquinone, 9,10-phenantrenequinone). In addition to 11ÎČ-HSD1, DHRS7 is another enzyme from SDR superfamily that have been proved, at least in vitro, to contribute to the metabolism of xenobiotics with carbonyl group

    Variations in the chemical profile and biological activities of licorice (Glycyrrhiza glabra L.), as influenced by harvest times

    No full text
    This study investigates the variations in the chemical profile, free radical scavenging, antioxidant and gastroprotective activities of licorice extracts (LE) from plants harvested during the months of February to November. Correlations between biological properties and the chemical composition of LE were also investigated. The results showed that the total contents of phenols, flavonoids and tannins in LE varied at different harvest times. Liquiritin and glycyrrhizin, the major components of LE, varied in the range of 28.65–62.80 and 41.84–114.33 mg g−1, respectively. The relative proportion of glycyrrhizin derivative (3), glabridin (4), glabrene (5) and liquiritigenin derivative (6), varied in the range of 0.88–11.38 %, 1.86–10.03 %, 1.80–18.40 % and 5.53–16.31 %, respectively. These fluctuations correlated positively with changes in the antioxidant and free radical scavenging activities of licorice. In general, the samples from May and November showed the most favorable free radical scavenging and antioxidant effects, whereas the best gastroprotective effect was in May. Liquiritin and glycyrrhizin, the major constituents in the February and May LE, appeared to contribute to the superoxide radical scavenging and gastroprotective effects. Glabridin and glabrene, the compounds with the highest relative proportion in the November LE, accounted for the antioxidant and DPPH scavenging activities of licorice. It is concluded that the chemical profile of licorice quantitatively varied at different harvest times and these fluctuations determined changes in its bioactivities. These data could pave the way to optimize harvesting protocols for licorice in relation with its health-promoting properties.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Analysis, fate and toxicity of chiral non-steroidal anti-inflammatory drugs in wastewaters and the environment: a review

    No full text
    corecore