10 research outputs found
Rational Design and Synthesis of Selective PRMT4 Inhibitors: A New Chemotype for Development of Cancer Therapeutics**
Protein arginine N-methyl transferase 4 (PRMT4) asymmetricallydimethylates the arginine residues of histone H3 and nonhistoneproteins. The overexpression of PRMT4 in several cancershas stimulated interest in the discovery of inhibitors as biologicaltools and, potentially, therapeutics. Although severalPRMT4 inhibitors have been reported, most display poorselectivity against other members of the PRMT family of methyltransferases. Herein, we report the structure-based design of anew class of alanine-containing 3-arylindoles as potent andselective PRMT4 inhibitors, and describe key structure–activityrelationships for this class of compounds
The C2H2 zinc-finger protein SYD-9 is a putative posttranscriptional regulator for synaptic transmission
Communication between neurons is largely achieved through chemical synapses, where neurotransmitters are released from synaptic vesicles at presynaptic terminals to activate postsynaptic cells. Exo- and endocytosis are coordinated to replenish the synaptic vesicle pool for sustained neuronal activity. We identified syd-9 (syd, synapse defective), a gene that encodes multiple C2H2 zinc-finger domain-containing proteins specifically required for synaptic function in Caenorhabditis elegans. syd-9 loss-of-function mutants exhibit locomotory defects, a diffuse distribution of synaptic proteins, and decreased synaptic transmission with unaffected neurodevelopment. syd-9 mutants share phenotypic and ultrastructural characteristics with mutants that lack synaptic proteins that are required for endocytosis. syd-9 mutants also display genetic interactions with these endocytotic mutants, suggesting that SYD-9 regulates endocytosis. SYD-9 proteins are enriched in the nuclei of both neuron and muscle cells, but their neuronal expression plays a major role in locomotion. SYD-9 isoforms display a speckle-like expression pattern that is typical of RNA-binding proteins that regulate premRNA splicing. Furthermore, syd-9 functions in parallel with unc-75 (unc, uncoordinated), the C. elegans homologue of the CELF/BrunoL family protein that regulates mRNA alternative splicing and processing, and is also required specifically for synaptic transmission. We propose that neuronal SYD-9 proteins are previously uncharacterized and specific posttranscriptional regulators of synaptic vesicle endocytosis
Discovery and Characterization of a Highly Potent and Selective Aminopyrazoline-Based in Vivo Probe (BAY-598) for the Protein Lysine Methyltransferase SMYD2
Protein
lysine methyltransferases have recently emerged as a new target class
for the development of inhibitors that modulate gene transcription
or signaling pathways. SET and MYND domain containing protein 2 (SMYD2)
is a catalytic SET domain containing methyltransferase reported to
monomethylate lysine residues on histone and nonhistone proteins.
Although several studies have uncovered an important role of SMYD2
in promoting cancer by protein methylation, the biology of SMYD2 is
far from being fully understood. Utilization of highly potent and
selective chemical probes for target validation has emerged as a concept
which circumvents possible limitations of knockdown experiments and,
in particular, could result in an improved exploration of drug targets
with a complex underlying biology. Here, we report the development
of a potent, selective, and cell-active, substrate-competitive inhibitor
of SMYD2, which is the first reported inhibitor suitable for in vivo
target validation studies in rodents