81 research outputs found

    10x224-Gb/s POLMUX-16QAM transmission over 656 km of large-Aeff PSCF with a special efficiency of 5.6 b/s/Hz

    Get PDF
    We demonstrate the successful transmission of 10 channels with 224-Gb/s POLMUX-16QAM modulation (28 GBaud) on a 37.5-GHz wavelength grid. Using large-Aeff pure-silica-core fibers we show a 656-km transmission distance with a spectral efficiency of 5.6 b/s/Hz. We report a back-to-back performance penalty of 3.5 dB compared to theoretical limits at the forward-error correction (FEC) limit (bit-error rate of 3.8·10-3), and a margin of 0.5 dB in Q-factor with respect to the FEC-limit after 656 km of transmission

    Multimode EDFA performance in mode-division multiplexed transmission systems

    Full text link
    We report a detailed study on the system performance of a two-mode group EDFA. In particular we quantify how the gain spectrum and BER performance are affected by input signal and pump power as required in the execution of our ongoing MDM transmission experiments

    Multimode EDFA performance in mode-division multiplexed transmission systems

    No full text
    We report a detailed study on the system performance of a two-mode group EDFA. In particular we quantify how the gain spectrum and BER performance are affected by input signal and pump power as required in the execution of our ongoing MDM transmission experiments

    High capacity multi-mode transmission systems using higher-order modulation formats

    No full text
    We look at multi-mode fiber as potential means to upgrade capacity of optical transmission systems compared to current single-mode technology by employing multiple modes as transmission lanes as well as using higher-order modulation formats

    30.7 Tb/s (96x320 Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber

    No full text
    We report for the first time coherently-detected, polarization-multiplexed transmission over a photonic band gap fiber. By transmitting 96 x 320-Gb/s DP-32QAM modulated channels, a net data rate of 24 Tb/s was obtained

    Mode-division-multiplexed 3x112-Gb/s DP-QPSK transmission over 80-km few-mode fiber with inline MM-EDFA and blind DSP

    No full text
    We show transmission of a 3x112-Gb/s DP-QPSK mode-multiplexed signal up to 80km, without and with multi-mode EDFA, using blind 6x6 MIMO digital signal processing. We show that the OSNR-penalty induced by mode-mixing in the multi-mode EDFA is negligible

    First Demonstration of a Broadband 37-cell Hollow Core Photonic Bandgap Fiber and Its Application to High Capacity Mode Division Multiplexing

    Full text link
    We report fabrication of the first low-loss, broadband 37-cell photonic bandgap fiber. Exploiting absence of surface modes and low cross-talk in the fiber we demonstrate mode division multiplexing over three modes with record transmission capacity

    Comparative Analysis of PvPAP Gene Family and Their Functions in Response to Phosphorus Deficiency in Common Bean

    Get PDF
    BACKGROUND: Purple acid phosphatases (PAPs) play a vital role in adaptive strategies of plants to phosphorus (P) deficiency. However, their functions in relation to P efficiency are fragmentary in common bean. PRINCIPAL FINDINGS: Five PvPAPs were isolated and sequenced in common bean. Phylogenetic analysis showed that PvPAPs could be classified into two groups, including a small group with low molecular mass, and a large group with high molecular mass. Among them, PvPAP3, PvPAP4 and PvPAP5 belong to the small group, while the other two belong to the large group. Transient expression of 35S:PvPAPs-GFP on onion epidermal cells verified the variations of subcellular localization among PvPAPs, suggesting functional diversities of PvPAPs in common bean. Quantitative PCR results showed that most PvPAPs were up-regulated by phosphate (Pi) starvation. Among them, the expression of the small group PvPAPs responded more to Pi starvation, especially in the roots of G19833, the P-efficient genotype. However, only overexpressing PvPAP1 and PvPAP3 could result in significantly increased utilization of extracellular dNTPs in the transgenic bean hairy roots. Furthermore, overexpressing PvPAP3 in Arabidopsis enhanced both plant growth and total P content when dNTPs were supplied as the sole external P source. CONCLUSIONS: The results suggest that PvPAPs in bean varied in protein structure, response to P deficiency and subcellular localization. Among them, both PvPAP1 and PvPAP3 might function as utilization of extracellular dNTPs

    How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies

    Full text link
    • …
    corecore