22 research outputs found

    The Antimicrobial Peptide Histatin-5 Causes a Spatially Restricted Disruption on the Candida albicans Surface, Allowing Rapid Entry of the Peptide into the Cytoplasm

    Get PDF
    Antimicrobial peptides play an important role in host defense against microbial pathogens. Their high cationic charge and strong amphipathic structure allow them to bind to the anionic microbial cell membrane and disrupt the membrane bilayer by forming pores or channels. In contrast to the classical pore-forming peptides, studies on histatin-5 (Hst-5) have suggested that the peptide is transported into the cytoplasm of Candida albicans in a non-lytic manner, and cytoplasmic Hst-5 exerts its candicidal activities on various intracellular targets, consistent with its weak amphipathic structure. To understand how Hst-5 is internalized, we investigated the localization of FITC-conjugated Hst-5. We find that Hst-5 is internalized into the vacuole through receptor-mediated endocytosis at low extracellular Hst-5 concentrations, whereas under higher physiological concentrations, Hst-5 is translocated into the cytoplasm through a mechanism that requires a high cationic charge on Hst-5. At intermediate concentrations, two cell populations with distinct Hst-5 localizations were observed. By cell sorting, we show that cells with vacuolar localization of Hst-5 survived, while none of the cells with cytoplasmic Hst-5 formed colonies. Surprisingly, extracellular Hst-5, upon cell surface binding, induces a perturbation on the cell surface, as visualized by an immediate and rapid internalization of Hst-5 and propidium iodide or rhodamine B into the cytoplasm from the site using time-lapse microscopy, and a concurrent rapid expansion of the vacuole. Thus, the formation of a spatially restricted site in the plasma membrane causes the initial injury to C. albicans and offers a mechanism for its internalization into the cytoplasm. Our study suggests that, unlike classical channel-forming antimicrobial peptides, action of Hst-5 requires an energized membrane and causes localized disruptions on the plasma membrane of the yeast. This mechanism of cell membrane disruption may provide species-specific killing with minimal damage to microflora and the host and may be used by many other antimicrobial peptides

    Microbial Load of Drinking Water Reservoir Tributaries during Extreme Rainfall and Runoff

    No full text
    Hygienic and microbiological examinations of watercourses are usually not carried out during heavy rainfall and runoff events. After rainfall or snowmelt, there are often massive increases in turbidity in flooding creeks in mountain ranges, which are frequently interpreted as an indication of microbial contamination. The aim of this study was to quantify the microbial loads of watercourses during such runoff events and to compare these loads with loads occurring during regular conditions. In a 14-month monitoring period we investigated the microbial loads of three tributaries of different drinking water reservoirs. A total of 99 water samples were taken under different runoff conditions and analyzed to determine physical, chemical, bacterial, and parasitic parameters. Thirty-two water samples were considered event samples during nine measuring series. The criteria for events, based on duration and intensity of precipitation, water depth gauge measurements, and dynamics, had been fixed before the investigation for each creek individually. Of the physical and chemical parameters examined, only the turbidity, pH, and nitrate values differed clearly from the values obtained for regular samples. Most of the bacteriological parameters investigated (colony, Escherichia coli, coliform, fecal streptococcal, and Clostridium perfringens counts) increased considerably during extreme runoff events. If relevant sources of parasitic contamination occurred in catchment areas, the concentrations of Giardia and Cryptosporidium rose significantly during events. The results show that substantial shares of the total microbial loads in watercourses and in drinking water reservoirs result from rainfall and extreme runoff events. Consequently, regular samples are considered inadequate for representing the microbial contamination of watercourse systems. The procedures for raw water surveillance in the context of multiple-barrier protection and risk assessment ought to include sampling during extreme runoff situations

    Erfassung des Wachstums und des Kontaminationspotentials von Biofilmen in der Verteilung von Trinkwasser. T. 5: Untersuchung zur Entstehung und Vermeidung des Biofilms im Trinkwasserbereich und sein Einfluss auf die Wasserbeschaffenheit. Projekt 5.2: Einfluss chemischer Desinfektionsverfahren auf gebildete bzw. sich bildende Biofilme Abschlussbericht (Berichtszeitraum Oktober 1998 bis Juli 2002)

    No full text
    SIGLEAvailable from TIB Hannover: F03B217+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung und Forschung, Berlin (Germany); Kernforschungszentrum Karlsruhe GmbH (Germany). Projekttraeger Wassertechnologie und SchlammbehandlungDEGerman
    corecore