396 research outputs found

    SYNTHESIS, CHARACTERIZATION AND ANTI-INFLAMMATORY ACTIVITY OF NOVEL PYRAZOLE DERIVATIVES

    Get PDF
    Objectives: To synthesize novel pyrazole derivatives and their evaluation for anti-inflammatory activity. Methods: The synthesis of chalcone (1) was carried out by using Claisen-Schmidt condensation. which on further cyclization with thiosemicarbazidegives the substituted 3, 5-diphenyl-4, 5-dihydro-pyrazole-1-carbothoic acid amide (2), further reaction with different aldehydes yield title compounds(3). Using this scheme 8 compounds were synthesized which further have been evaluated for anti-inflammatory activity by egg-albumin induced pawedema.Results: All the synthesized compounds have been supported by spectral analysis. The anti-inflammatory activity of synthesized compounds wascompared with standard anti-inflammatory agent Diclofenac sodium.Conclusion: Compound-8, compound-2 and compound-3 showed greater anti-inflammatory activity due to the presence of alkene and electronwithdrawing groups (Cl and NO2). Keywords: Chalcone, Thiosemicarbazide, Pyrazole derivatives, Anti-inflammatory activity

    Effect of Temperature induction response on Cell viability, Cell Survivability, Malondialdehyde content and total soluble protein content of cotton (Gossypium hirsutum L.) genotypes

    Get PDF
    “Temperature Induction Response” (TIR) technique was employed to investigate the effect of temperature on popular 20 cotton (Gossypium hirsutum L.) genotypes in a laboratory experiment conducted at the Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore during 2020-2021. Identical sized ten days old cotton seedlings were selected and subjected to inductive temperature (gradual temperature raised from 28 to 40℃) for 4 h and non-inductive temperature (46℃ for 3 h, 47℃ for 3 h, 48℃ for 3 h and 48℃ for 4 h) for specific time duration. KC3 and SVPR6 recorded highest thermotolerance among the genotypes and TSH325 and TSH357 showed moderate thermotolerance while TSH375 and TSH383 were sensitive, in terms of seedling survival, cell viability, total soluble protein and malondialdehyde compared to remaining genotypes under non-inductive temperature

    Impact of elevated temperature on root traits and microbial interaction in cotton (Gossypium hirsutum L.) genotypes

    Get PDF
    Climate change mainly alters the plant phyllosphere and rhizosphere resource allocations. Compared with shoot parameters, there is less information about how roots, especially root system architecture (RSA) and their interactions with others, may respond to elevated temperature changes. These responses could greatly influence different species acquisition of resources and their competition with their neighbours. The main aim of this experiment was to evaluate the effects of ambient temperature (T1) and elevated temperature (+4oC) (T2) in Open-top chamber (OTC) on root traits and microbial interaction changes in cotton (Gossypium hirsutum L.). A pot experiment was conducted at the Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, during 2020-2021 to investigate the root traits and microbial interactions. Cotton varieties, namely KC3, SVPR6, TSH325, TSH357 and TSH375 were screened at the seedling level for cellular thermo tolerance and further, at the root level, these selected varieties were studied against the elevated temperature condition for 10 days in OTC during the stage of flowering to boll development period along with control temperature condition. Root interactions' intensity and direction may fluctuate as a result of variations in RSA responses between species. Negative root interactions could become more intense under high temperature circumstances and species with bigger roots and greater early root growth had stronger competitive advantages. The present findings showed that elevated temperatures promote various microbial growths in the geothermal regions, enhancing the root angle and root length of cotton species. Among the genotypes, KC3 and SVPR6 performed better under elevated temperatures.

    Association of triglycerides/high density lipoprotein cholesterol ratio with insulin resistance in polycystic ovary syndrome

    Get PDF
    Background: Insulin resistance (IR) is frequently observed in women with polycystic ovary syndrome (PCOS). Recent studies advocated that triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) can be used as a simple clinical indicator of IR. Hence, the present study was performed to investigate the use of TG/HDL-C and its association with IR in PCOS.Methods: Forty-one patients with PCOS and 40 healthy age matched women were randomly enrolled. Demographic and clinical characteristics were obtained. Insulin resistance was defined by the homeostasis model assessment for insulin resistance (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI).Results: In PCOS group, the insulin, HOMA-IR and TG/HDL-C ratio were significantly higher (p=0.001) than controls while, QUICKI was lower (p=0.001). Insulin, HOMA-IR were positively correlated with TG/HDL-C (ρ=0.303, p=0.006 and ρ=0.312, p=0.005 respectively) while, QUICKI was negatively correlated (ρ=-0.698, p=0.001). In receiver operating characteristic (ROC) analysis, area under the curve (AUC) for model based on QUICKI levels was better 0.898 (95% CI: 0.811-0.955, p=0.001) than HOMA-IR 0.636 (95% CI: 0.522-0.740, p=0.03). A cut-off value 3.23 for TG/HDL-C is proposed from the model based on QUICKI with best combination of sensitivity 83.3% and specificity 86.7%.Conclusions: Results of present study support that TG/HDL-C ratio may be a simple indicator of IR in PCOS patients which helps clinicians to identify IR in small centers, where the assays for insulin measurement are not available

    Effect of drought on gas exchange and chlorophyll fluorescence of groundnut genotypes

    Get PDF
    Drought is one of the major threats to groundnut productivity, causing a greater loss than any other abiotic factor. Water stress conditions alter plant photosynthetic activity, impacting future growth and assimilating mobilization towards sink tissues. The purpose of this study was to investigate how drought impacts the photosynthesis of plants and its links to drought tolerance. The influence of reproductive stage drought on photosynthetic activity and chlorophyll fluorescence of groundnut is well studied. The experiment was conducted in Kharif 2019 (Jul-Sep), where recent series in groundnut genotypes (60 nos) sown under rainfed conditions and water stress was created by withholding irrigation for 20 days between 35-55 days after sowing in the field to simulate drought conditions. Imposition of water deficit stress reduced PS II efficiency, which significantly altered the photosynthetic rate in the leaf. Observation of gas exchange parameters viz., photosynthetic rate, stomatal conductance and transpiration rate after 20 days of stress imposition revealed that of all 60 genotypes, 20 genotypes (VG 17008, VG 17046VG 18005, VG 18102, VG 18077, VG 19572, VG 19709, VG 18111, VG19561, VG19576, VG 19620, VG 19681, VG 19688, etc.,) had better Photosynthetic rate, Stomatal conductance. Similarly, PS II efficiency analyzed through fluorescence meter revealed that among the 60 and all the genotypes given above recorded higher value in Fv/Fm. Results obtained from Cluster analysis and PCA confirmed that photosynthetic rate and Fv/Fm is useful parameter in screening adapted cultivars under drought stress. These findings lay the groundwork for a future study to decipher the molecular pathways underpinning groundnut drought resistance

    Electronic Structures, Born Effective Charges and Spontaneous Polarization in Magnetoelectric Gallium Ferrite

    Get PDF
    We present a theoretical study of the structure-property correlation in gallium ferrite, based on the first principles calculations followed by a subsequent comparison with the experiments. Local spin density approximation (LSDA+U) of the density functional theory has been used to calculate the ground state structure, electronic band structure, density of states and Born effective charges. Calculations reveal that the ground state structure is orthorhombic Pc21n having A-type antiferromagnetic spin configuration, with lattice parameters matching well with those obtained experimentally. Plots of partial density of states of constituent ions exhibit noticeable hybridization of Fe 3d, Ga 4s, Ga 4p and O 2p states. However, the calculated charge density and electron localization function show largely ionic character of the Ga/Fe-O bonds which is also supported by lack of any significant anomaly in the calculated Born effective charges with respect to the corresponding nominal ionic charges. The calculations show a spontaneous polarization of ~ 59 microC/cm^2 along b-axis which is largely due to asymmetrically placed Ga1, Fe1, O1, O2 and O6 ions.Comment: Total 21 pages including 3 tables and 6 figure

    Recovery of Chromium from Ferrochrome Slag

    Get PDF
    ABSTRACT: Ferrochrome slag generated from alumino-thermi method piles up in large quantities poses many problems to the environment and contaminates ground water on long run, needs to be addressed very urgently. It principally contains chromium, alumina, Iron, magnesium, calcium in small quantities. This paper deals with extraction of chromium and renders the slag harmless. In this paper industrial waste was collected from GTS industries and used in the subsequent experimentation. Ferrochrome slag is treated with lime to conduct slag-lime solid-solid reaction. Chromium present in the slag reacts with lime to form mixed chromates. The reaction is conducted at 973K, soluble chromium ion was extracted with water and is subsequently separated by adsorbing fly ash based zeolite which can be recovered. The recovery of chromium metal in the slag is 64%. The method is viable for the commercial recovery of chromium from slag

    Comparative Lipidomics in Clinical Isolates of Candida albicans Reveal Crosstalk between Mitochondria, Cell Wall Integrity and Azole Resistance

    Get PDF
    Prolonged usage of antifungal azoles which target enzymes involved in lipid biosynthesis invariably leads to the development of multi-drug resistance (MDR) in Candida albicans. We had earlier shown that membrane lipids and their fluidity are closely linked to the MDR phenomenon. In one of our recent studies involving comparative lipidomics between azole susceptible (AS) and azole resistant (AR) matched pair clinical isolates of C. albicans, we could not see consistent differences in the lipid profiles of AS and AR strains because they came from different patients and so in this study, we have used genetically related variant recovered from the same patient collected over a period of 2-years. During this time, the levels of fluconazole (FLC) resistance of the strain increased by over 200-fold. By comparing the lipid profiles of select isolates, we were able to observe gradual and statistically significant changes in several lipid classes, particularly in plasma membrane microdomain specific lipids such as mannosylinositolphosphorylceramides and ergosterol, and in a mitochondrial specific phosphoglyceride, phosphatidyl glycerol. Superimposed with these quantitative and qualitative changes in the lipid profiles, were simultaneous changes at the molecular lipid species levels which again coincided with the development of resistance to FLC. Reverse transcriptase-PCR of the key genes of the lipid metabolism validated lipidomic picture. Taken together, this study illustrates how the gradual corrective changes in Candida lipidome correspond to the development of FLC tolerance. Our study also shows a first instance of the mitochondrial membrane dysfunction and defective cell wall (CW) in clinical AR isolates of C. albicans, and provides evidence of a cross-talk between mitochondrial lipid homeostasis, CW integrity and azole tolerance
    corecore