18 research outputs found

    Predictability problems of global change as seen through natural systems complexity description. 1. General Statements

    Get PDF
    The overall problem of global change is considered as the mathematical discrete dynamics discipline that deals with the sets, measures and metrics (SMM) categories in information sub-spaces. The SMM conception enables to unify techniques of data interpretation and analysis and to explain how effectively the giant amounts of information from multispectral satellite radiometers and ground-based instruments are to be processed. It is shown that Prigogine's chaos/order theory and Kolmogorov's probability space are two milestones in understanding the predictability problems of global change. The essence of the problems is maintained to be in filtering out a β€œuseful signal” that would spread from key regions of the globe as compared to their background. Global analysis, interpretation and modelling issues are outlined in the framework of incorrect mathematical problems and of the SMM categories, which contribute to solving the comparability problem for different sets of observations

    Predictability problems of global change as seen through natural systems complexity description. 2. Approach

    Get PDF
    Developing the general statements of the proposed global change theory, outlined in Part 1 of the publication, Kolmogorov's probability space is used to study properties of information measures (unconditional, joint and conditional entropies, information divergence, mutual information, etc.). Sets of elementary events, the specified algebra of their sub-sets and probability measures for the algebra are composite parts of the space. The information measures are analyzed using the mathematical expectance operator and the adequacy between an additive function of sets and their equivalents in the form of the measures. As a result, explanations are given to multispectral satellite imagery visualization procedures using Markov's chains of random variables represented by pixels of the imagery. The proposed formalism of the information measures application enables to describe the natural targets complexity by syntactically governing probabilities. Asserted as that of signal/noise ratios finding for anomalies of natural processes, the predictability problem is solved by analyses of temporal data sets of related measurements for key regions and their background within contextually coherent structures of natural targets and between particular boundaries of the structures

    РаспознаваниС ΠΏΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ возрастного состава дрСвостоСв с использованиСм Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² Π½Π° основС ΡΠ°ΠΌΠΎΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…ΡΡ ΠΊΠΎΠ΄ΠΎΠ²

    Get PDF
    The basic model of the recognition of forest inventory characteristics using spectral features is represented in the framework of the problem of hyperspectral airborne imagery processing. The algorithm of multiclass supervised classification based on the error-correcting output codes underlies this model. The support vector machine method is used as the necessary binary classifier. The method of the construction of training set by using mixed forest plots is represented. Results of the retrieval of species and age composition of forest stands from hyperspectral images are represented for the selected test area. The estimate of accuracy of the retrieval of the mixed forest composition is comparable with the accuracy of ground-based forest inventory dataΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π° базовая модСль распознавания таксационных характСристик дрСвостоСв ΠΏΠΎ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ Π² ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π³ΠΈΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π²ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ. ΠžΡΠ½ΠΎΠ²Ρƒ ΠΌΠΎΠ΄Π΅Π»ΠΈ составляСт Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ многоклассовой ΠΎΠ±ΡƒΡ‡Π°Π΅ΠΌΠΎΠΉ классификации с использованиСм ΡΠ°ΠΌΠΎΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…ΡΡ ΠΊΠΎΠ΄ΠΎΠ². Π’ качСствС Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π±ΠΈΠ½Π°Ρ€Π½ΠΎΠΉ классификации ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΠΏΠΎΡ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Описана ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° использования Π²Ρ‹Π΄Π΅Π»ΠΎΠ² со ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ ΠΏΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΌ составом для построСния ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎ ансамбля. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ восстановлСния ΠΏΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ возрастного состава для Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ тСстового участка ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ Π³ΠΈΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ. ΠžΡ†Π΅Π½ΠΊΠ° точности восстановлСния ΠΏΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ состава соотвСтствуСт точности Π½Π°Π·Π΅ΠΌΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… лСсотаксаци

    >

    No full text

    Integrated Models of Geophysical Processes Description in Terms of Satellite and Ground-Based Data Interpretation

    No full text
    Abstract – Two examples are shown of remote sensing data applications for integrated models of separate spheres of the Earth. Innovative techniques of vegetation biomass amount assessment using multispectral satellite imagery is given in the first example. Problems of temporal data series analysis for information products of satellite data processing using a gridded data representation to understand predictability problem of global/regional change are considered in the second example. Both types of the applications serve to demonstrate new opportunities in interpretation of different types of data in the newly defined domain of information & dynamical modeling

    Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ классификаторов Π² Π·Π°Π΄Π°Ρ‡Π΅ тСматичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π³ΠΈΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π•.

    Get PDF
    The performance of the spectral classification methods is analyzed for the problem of hyperspectral remote sensing of soil and vegetation. The characteristic features of metric classifiers, parametric Bayesian classifiers and multiclass support vector machines are discussed. The results of classification of hyperspectral airborne images by using the specified above methods and comparative analysis are demonstrated. The advantages of the use of nonlinear classifiers are shown. It is also shown, the similarity of the results of some modifications of support vector machines and Bayesian classificationΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ Π°Π½Π°Π»ΠΈΠ· эффСктивности ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ классификации Π² Π·Π°Π΄Π°Ρ‡Π΅ Π³ΠΈΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ дистанционного зондирования ΠΏΠΎΡ‡Π²Π΅Π½Π½ΠΎ-Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡ€ΠΎΠ²Π°. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ особСнности Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ мСтричСских классификаторов, парамСтричСских байСсовских классификаторов ΠΈ многоклассового ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠΏΠΎΡ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π”Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ классификации Π³ΠΈΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… аэроизобраТСний ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΈ приводятся Π΄Π°Π½Π½Ρ‹Π΅ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ прСимущСства использования Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… классификаторов. ДСмонстрируСтся Π±Π»ΠΈΠ·ΠΎΡΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠΏΠΎΡ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ байСсовской классификаци

    The Problems of Airborne Hyperspectral Monitoring of Soil and Vegetation Cover

    Get PDF
    РассматриваСтся Π·Π°Π΄Π°Ρ‡Π° дистанционного зондирования ΠΏΠΎΡ‡Π²Π΅Π½Π½ΠΎ-Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡ€ΠΎΠ²Π° с использованиСм Π°Π²ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… гипСрспСктромСтров. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ Π°Π½Π°Π»ΠΈΠ· соврСмСнного развития аэрокосмичСской ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ высокого ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ тСматичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π³ΠΈΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…. Π˜ΡΡΠ»Π΅Π΄ΡƒΡŽΡ‚ΡΡ возмоТности использования ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ байСсовской классификации для распознавания ΠΏΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ состава лСсной Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° эффСктивного сокращСния размСрности ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ пространства. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ ΠΎΡ†Π΅Π½ΠΊΠΈ точности классификации для Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… участков тСстовой Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈThe problem of remote sensing of soil and vegetation cover using airborne hyperspectral cameras is considered. The modern state of development of airspace measuring instruments with high spectral resolution is analyzed. The problems and solution methods of the thematic processing of hyperspectral images are discussed. Applications of the optimal Bayesian classification for the recognition of the forest stand species are investigated. The method of the effective reduction of the dimensionality of the feature space is proposed. The classification accuracy for the selected test areas is estimate

    Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ классификаторов Π² Π·Π°Π΄Π°Ρ‡Π΅ тСматичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π³ΠΈΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π•.

    No full text
    The performance of the spectral classification methods is analyzed for the problem of hyperspectral remote sensing of soil and vegetation. The characteristic features of metric classifiers, parametric Bayesian classifiers and multiclass support vector machines are discussed. The results of classification of hyperspectral airborne images by using the specified above methods and comparative analysis are demonstrated. The advantages of the use of nonlinear classifiers are shown. It is also shown, the similarity of the results of some modifications of support vector machines and Bayesian classificationΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡΡ Π°Π½Π°Π»ΠΈΠ· эффСктивности ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ классификации Π² Π·Π°Π΄Π°Ρ‡Π΅ Π³ΠΈΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ дистанционного зондирования ΠΏΠΎΡ‡Π²Π΅Π½Π½ΠΎ-Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡ€ΠΎΠ²Π°. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ особСнности Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ мСтричСских классификаторов, парамСтричСских байСсовских классификаторов ΠΈ многоклассового ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠΏΠΎΡ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π”Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ классификации Π³ΠΈΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… аэроизобраТСний ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΈ приводятся Π΄Π°Π½Π½Ρ‹Π΅ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ прСимущСства использования Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… классификаторов. ДСмонстрируСтся Π±Π»ΠΈΠ·ΠΎΡΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠΏΠΎΡ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ байСсовской классификаци
    corecore