18 research outputs found
Predictability problems of global change as seen through natural systems complexity description. 1. General Statements
The overall problem of global change is considered as the mathematical discrete dynamics discipline that deals with the sets, measures and metrics (SMM) categories in information sub-spaces. The SMM conception enables to unify techniques of data interpretation and analysis and to explain how effectively the giant amounts of information from multispectral satellite radiometers and ground-based instruments are to be processed. It is shown that Prigogine's chaos/order theory and Kolmogorov's probability space are two milestones in understanding the predictability problems of global change. The essence of the problems is maintained to be in filtering out a βuseful signalβ that would spread from key regions of the globe as compared to their background. Global analysis, interpretation and modelling issues are outlined in the framework of incorrect mathematical problems and of the SMM categories, which contribute to solving the comparability problem for different sets of observations
Predictability problems of global change as seen through natural systems complexity description. 2. Approach
Developing the general statements of the proposed global change theory, outlined in Part 1 of the publication, Kolmogorov's probability space is used to study properties of information measures (unconditional, joint and conditional entropies, information divergence, mutual information, etc.). Sets of elementary events, the specified algebra of their sub-sets and probability measures for the algebra are composite parts of the space. The information measures are analyzed using the mathematical expectance operator and the adequacy between an additive function of sets and their equivalents in the form of the measures. As a result, explanations are given to multispectral satellite imagery
visualization procedures using Markov's chains of random variables represented by pixels
of the imagery. The proposed formalism of the information measures application enables
to describe the natural targets complexity by syntactically governing probabilities.
Asserted as that of signal/noise ratios finding for anomalies of natural processes, the
predictability problem is solved by analyses of temporal data sets of related measurements for key regions and their background within contextually coherent structures of natural targets and between particular boundaries of the structures
Π Π°ΡΠΏΠΎΠ·Π½Π°Π²Π°Π½ΠΈΠ΅ ΠΏΠΎΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° Π΄ΡΠ΅Π²ΠΎΡΡΠΎΠ΅Π² Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°ΠΌΠΎΠΊΠΎΡΡΠ΅ΠΊΡΠΈΡΡΡΡΠΈΡ ΡΡ ΠΊΠΎΠ΄ΠΎΠ²
The basic model of the recognition of forest inventory characteristics using spectral features
is represented in the framework of the problem of hyperspectral airborne imagery processing.
The algorithm of multiclass supervised classification based on the error-correcting output codes
underlies this model. The support vector machine method is used as the necessary binary classifier.
The method of the construction of training set by using mixed forest plots is represented. Results
of the retrieval of species and age composition of forest stands from hyperspectral images are
represented for the selected test area. The estimate of accuracy of the retrieval of the mixed forest
composition is comparable with the accuracy of ground-based forest inventory dataΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° Π±Π°Π·ΠΎΠ²Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠ°ΡΠΏΠΎΠ·Π½Π°Π²Π°Π½ΠΈΡ ΡΠ°ΠΊΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ Π΄ΡΠ΅Π²ΠΎΡΡΠΎΠ΅Π²
ΠΏΠΎ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°ΠΌ Π² ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ΅ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π³ΠΈΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π°Π²ΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. ΠΡΠ½ΠΎΠ²Ρ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π°ΡΡΠΎΠ²ΠΎΠΉ ΠΎΠ±ΡΡΠ°Π΅ΠΌΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ°ΠΌΠΎΠΊΠΎΡΡΠ΅ΠΊΡΠΈΡΡΡΡΠΈΡ
ΡΡ ΠΊΠΎΠ΄ΠΎΠ². Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° Π±ΠΈΠ½Π°ΡΠ½ΠΎΠΉ
ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ ΠΌΠ΅ΡΠΎΠ΄ ΠΎΠΏΠΎΡΠ½ΡΡ
Π²Π΅ΠΊΡΠΎΡΠΎΠ². ΠΠΏΠΈΡΠ°Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΠ΄Π΅Π»ΠΎΠ²
ΡΠΎ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΠΌ ΠΏΠΎΡΠΎΠ΄Π½ΡΠΌ ΡΠΎΡΡΠ°Π²ΠΎΠΌ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΎΠ±ΡΡΠ°ΡΡΠ΅Π³ΠΎ Π°Π½ΡΠ°ΠΌΠ±Π»Ρ. ΠΡΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡΠΈΠΌΠ΅Ρ
Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΏΠΎΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° Π΄Π»Ρ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΊΠ° ΠΏΠΎ
Π΄Π°Π½Π½ΡΠΌ Π³ΠΈΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΡΠ΅Π½ΠΊΠ° ΡΠΎΡΠ½ΠΎΡΡΠΈ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΏΠΎΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π°
ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΎΡΠ½ΠΎΡΡΠΈ Π½Π°Π·Π΅ΠΌΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
Π»Π΅ΡΠΎΡΠ°ΠΊΡΠ°ΡΠΈ
Integrated Models of Geophysical Processes Description in Terms of Satellite and Ground-Based Data Interpretation
Abstract β Two examples are shown of remote sensing data applications for integrated models of separate spheres of the Earth. Innovative techniques of vegetation biomass amount assessment using multispectral satellite imagery is given in the first example. Problems of temporal data series analysis for information products of satellite data processing using a gridded data representation to understand predictability problem of global/regional change are considered in the second example. Both types of the applications serve to demonstrate new opportunities in interpretation of different types of data in the newly defined domain of information & dynamical modeling
ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠ² Π² Π·Π°Π΄Π°ΡΠ΅ ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π³ΠΈΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π.
The performance of the spectral classification methods is analyzed for the problem of hyperspectral
remote sensing of soil and vegetation. The characteristic features of metric classifiers, parametric
Bayesian classifiers and multiclass support vector machines are discussed. The results of classification
of hyperspectral airborne images by using the specified above methods and comparative analysis are
demonstrated. The advantages of the use of nonlinear classifiers are shown. It is also shown, the similarity
of the results of some modifications of support vector machines and Bayesian classificationΠΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ Π°Π½Π°Π»ΠΈΠ· ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π² Π·Π°Π΄Π°ΡΠ΅
Π³ΠΈΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΡΠ²Π΅Π½Π½ΠΎ-ΡΠ°ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΠΎΠ²Π°.
ΠΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠ², ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π±Π°ΠΉΠ΅ΡΠΎΠ²ΡΠΊΠΈΡ
ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠ² ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π°ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΎΠΏΠΎΡΠ½ΡΡ
Π²Π΅ΠΊΡΠΎΡΠΎΠ².
ΠΠ΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΡΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π³ΠΈΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π°ΡΡΠΎΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ
ΡΠΊΠ°Π·Π°Π½Π½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ Π΄Π°Π½Π½ΡΠ΅ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. ΠΠΎΠΊΠ°Π·Π°Π½Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠ². ΠΠ΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΠ΅ΡΡΡ Π±Π»ΠΈΠ·ΠΎΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ²
Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΎΠΏΠΎΡΠ½ΡΡ
Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΈ Π±Π°ΠΉΠ΅ΡΠΎΠ²ΡΠΊΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈ
The Problems of Airborne Hyperspectral Monitoring of Soil and Vegetation Cover
Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ Π·Π°Π΄Π°ΡΠ° Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΡΠ²Π΅Π½Π½ΠΎ-ΡΠ°ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΠΎΠ²Π°
Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°Π²ΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π³ΠΈΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΎΠ². ΠΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ Π°Π½Π°Π»ΠΈΠ· ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π°ΡΡΠΎΠΊΠΎΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π°ΠΏΠΏΠ°ΡΠ°ΡΡΡΡ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ.
ΠΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π³ΠΈΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
.
ΠΡΡΠ»Π΅Π΄ΡΡΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ Π±Π°ΠΉΠ΅ΡΠΎΠ²ΡΠΊΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
Π΄Π»Ρ ΡΠ°ΡΠΏΠΎΠ·Π½Π°Π²Π°Π½ΠΈΡ ΠΏΠΎΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° Π»Π΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ. ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°
ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°. ΠΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ ΠΎΡΠ΅Π½ΠΊΠΈ
ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π΄Π»Ρ Π²ΡΠ±ΡΠ°Π½Π½ΡΡ
ΡΡΠ°ΡΡΠΊΠΎΠ² ΡΠ΅ΡΡΠΎΠ²ΠΎΠΉ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈThe problem of remote sensing of soil and vegetation cover using airborne hyperspectral cameras is
considered. The modern state of development of airspace measuring instruments with high spectral
resolution is analyzed. The problems and solution methods of the thematic processing of hyperspectral
images are discussed. Applications of the optimal Bayesian classification for the recognition of the
forest stand species are investigated. The method of the effective reduction of the dimensionality of the
feature space is proposed. The classification accuracy for the selected test areas is estimate
ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠ² Π² Π·Π°Π΄Π°ΡΠ΅ ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π³ΠΈΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π.
The performance of the spectral classification methods is analyzed for the problem of hyperspectral
remote sensing of soil and vegetation. The characteristic features of metric classifiers, parametric
Bayesian classifiers and multiclass support vector machines are discussed. The results of classification
of hyperspectral airborne images by using the specified above methods and comparative analysis are
demonstrated. The advantages of the use of nonlinear classifiers are shown. It is also shown, the similarity
of the results of some modifications of support vector machines and Bayesian classificationΠΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ Π°Π½Π°Π»ΠΈΠ· ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π² Π·Π°Π΄Π°ΡΠ΅
Π³ΠΈΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΡΠ²Π΅Π½Π½ΠΎ-ΡΠ°ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΡΠΎΠ²Π°.
ΠΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠ², ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π±Π°ΠΉΠ΅ΡΠΎΠ²ΡΠΊΠΈΡ
ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠ² ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π°ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΎΠΏΠΎΡΠ½ΡΡ
Π²Π΅ΠΊΡΠΎΡΠΎΠ².
ΠΠ΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΡΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π³ΠΈΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Π°ΡΡΠΎΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ
ΡΠΊΠ°Π·Π°Π½Π½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ Π΄Π°Π½Π½ΡΠ΅ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. ΠΠΎΠΊΠ°Π·Π°Π½Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ
ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠ². ΠΠ΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΠ΅ΡΡΡ Π±Π»ΠΈΠ·ΠΎΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ²
Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΎΠΏΠΎΡΠ½ΡΡ
Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΈ Π±Π°ΠΉΠ΅ΡΠΎΠ²ΡΠΊΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈ