736 research outputs found

    Magnetism of mixed quaternary Heusler alloys: (Ni,T)2_{2}MnSn (T=Cu,Pd) as a case study

    Full text link
    The electronic properties, exchange interactions, finite-temperature magnetism, and transport properties of random quaternary Heusler Ni2_{2}MnSn alloys doped with Cu- and Pd-atoms are studied theoretically by means of {\it ab initio} calculations over the entire range of dopant concentrations. While the magnetic moments are only weakly dependent on the alloy composition, the Curie temperatures exhibit strongly non-linear behavior with respect to Cu-doping in contrast with an almost linear concentration dependence in the case of Pd-doping. The present parameter-free theory agrees qualitatively and also reasonably well quantitatively with the available experimental results. An analysis of exchange interactions is provided for a deeper understanding of the problem. The dopant atoms perturb electronic structure close to the Fermi energy only weakly and the residual resistivity thus obeys a simple Nordheim rule. The dominating contribution to the temperature-dependent resistivity is due to thermodynamical fluctuations originating from the spin-disorder, which, according to our calculations, can be described successfully via the disordered local moments model. Results based on this model agree fairly well with the measured values of spin-disorder induced resistivity.Comment: 13 pages, 13 figure

    Fluidic low speed wind sensor research study Final report, Oct. 1968 - Oct. 1969

    Get PDF
    Cross flow and parallel flow concepts of fluidic wind speed sensor

    Correlated Doping in Semiconductors: The Role of Donors in III-V Diluted Magnetic Semiconductors

    Full text link
    We investigate the compositional dependence of the total energy of the mixed crystals (Ga,Mn)As co-doped with As, Sn, and Zn. Using the ab initio LMTO-CPA method we find a correlation between the incorporation of acceptors (Mn, Zn) and donors (Sn, antisite As). In particular, the formation energy of As_Ga is reduced by approx. 0.1 eV in the presence of Mn, and vice versa. This leads to the self-compensating behavior of (Ga,Mn)As.Comment: 8 pages, 2 figures, presented at the XXXI Int. School of Semiconducting Compounds, Jaszowiec 2002, Polan

    Thermopower of a superconducting single-electron transistor

    Get PDF
    We present a linear-response theory for the thermopower of a single-electron transistor consisting of a superconducting island weakly coupled to two normal-conducting leads (NSN SET). The thermopower shows oscillations with the same periodicity as the conductance and is rather sensitive to the size of the superconducting gap. In particular, the previously studied sawtooth-like shape of the thermopower for a normal-conducting single-electron device is qualitatively changed even for small gap energies.Comment: 9 pages, 3 figure

    Interface resistance of disordered magnetic multilayers

    Full text link
    We study the effect of interface disorder on the spin-dependent interface resistances of Co/Cu, Fe/Cr and Au/Ag multilayers using a newly developed method for calculating transmission matrices from first-principles. The efficient implementation using tight-binding linear-muffin-tin orbitals allows us to model interface disorder using large lateral supercells whereby specular and diffuse scattering are treated on an equal footing. Without introducing any free parameters, quantitative agreement with experiment is obtained. We predict that disorder {\it reduces} the majority-spin interface resistance of Fe/Cr(100) multilayers by a factor 3.Comment: 5 pages, 2 figures, submitted to PR
    corecore