21,139 research outputs found

    TEC enhancement due to energetic electrons above Taiwan and the West Pacific

    Full text link
    The energetic electrons of the inner radiation belt during a geomagnetic disturbance can penetrate in the forbidden range of drift shells located at the heights of the topside equatorial ionosphere (<1000 km). A good correlation was previously revealed between positive ionospheric storms and intense fluxes of quasi-trapped 30-keV electrons at ~900 km height in the forbidden zone. In the present work, we use statistics to validate an assumption that the intense electron fluxes in the topside equatorial ionosphere can be an important source of the ionization in the low-latitude ionosphere. The data on the energetic electrons were obtained from polar orbiting satellites over the periods of the 62 strong geomagnetic storms from 1999 to 2006. Ionospheric response to the selected storms was determined using global ionospheric maps of vertical total electron content (VTEC). A case-event study of a major storm on 9 November 2004 provided experimental evidence in support to the substantial ionization effect of energetic electrons during positive ionospheric storms at the low latitudes. Statistical analysis of nine magnetic storms indicated that the VTEC increases coincided with and coexisted with intense 30-keV electron fluxes irrespective of local time and phase of geomagnetic storm. We concluded that extremely intense fluxes of the 30-keV electrons in the topside low-latitude ionosphere can contribute ~ 10 - 30 TECU to the localized positive ionospheric storms.Comment: 15 pages, 4 figures, 1 table accepted for publication in Terrestrial, Atmospheric and Oceanic Sciences (TAO), Dec. 2012 A special issue on "Connection of solar and heliospheric activities with near-Earth space weather: Sun-Earth connection

    Adhesion between atomically pure metallic surfaces Final report

    Get PDF
    Metallic adhesion from compression loads resulting in plastic deformatio

    Adhesion between atomically pure metallic surfaces, part 4 Semiannual report

    Get PDF
    Adhesion between atomically pure metal surface

    Adhesion between automatically pure metallic surfaces, part 4 Semiannual report

    Get PDF
    Contact resistance measurements to determine adhesion between atomically pure metallic surface

    Scalable quantum computing with Josephson charge qubits

    Full text link
    A goal of quantum information technology is to control the quantum state of a system, including its preparation, manipulation, and measurement. However, scalability to many qubits and controlled connectivity between any selected qubits are two of the major stumbling blocks to achieve quantum computing (QC). Here we propose an experimental method, using Josephson charge qubits, to efficiently solve these two central problems. The proposed QC architecture is scalable since any two charge qubits can be effectively coupled by an experimentally accessible inductance. More importantly, we formulate an efficient and realizable QC scheme that requires only one (instead of two or more) two-bit operation to implement conditional gates.Comment: 4 pages, 2 figure
    corecore