737 research outputs found

    Globally clustered chimera states in delay--coupled populations

    Full text link
    We have identified the existence of globally clustered chimera states in delay coupled oscillator populations and find that these states can breathe periodically, aperiodically and become unstable depending upon the value of coupling delay. We also find that the coupling delay induces frequency suppression in the desynchronized group. We provide numerical evidence and theoretical explanations for the above results and discuss possible applications of the observed phenomena.Comment: Accepted in Phys. Rev. E as a Rapid Communicatio

    Protein interaction perturbation profiling at amino-acid resolution

    Get PDF
    The identification of genomic variants in healthy and diseased individuals continues to rapidly outpace our ability to functionally annotate these variants. Techniques that both systematically assay the functional consequences of nucleotide-resolution variation and can scale to hundreds of genes are urgently required. We designed a sensitive yeast two-hybrid-based 'off switch' for positive selection of interaction-disruptive variants from complex genetic libraries. Combined with massively parallel programmed mutagenesis and a sequencing readout, this method enables systematic profiling of protein-interaction determinants at amino-acid resolution. We defined >1,000 interaction-disrupting amino acid mutations across eight subunits of the BBSome, the major human cilia protein complex associated with the pleiotropic genetic disorder Bardet–Biedl syndrome. These high-resolution interaction-perturbation profiles provide a framework for interpreting patient-derived mutations across the entire protein complex and thus highlight how the impact of disease variation on interactome networks can be systematically assessed

    Cytotoxic Oleanane-Type Saponins from Albizia inundata

    Get PDF
    Bioassay-guided fractionation of a CH2Cl2−MeOH extract of the aerial parts of Albizia inundata resulted in the isolation of two new natural oleanane-type triterpene saponins {3-O-[α-l-arabinopyranosyl(1→6)]-2-acetamido-2-deoxy-β-d-glucopyranosyl oleanolic acid (1) and 3-O-[α-l-arabinopyranosyl(1→2)-α-l-arabinopyranosyl(1→6)]-2-acetamido-2-deoxy-β-d-glucopyranosyl acacic acid lactone (2)} along with seven known saponins {3-O-[α-l-arabinopyranosyl(1→6)]-2-acetamido-2-deoxy-β-d-glucopyranosyl echinocystic acid (3), 3-O-[β-d-xylopyranosyl (l→2)-α-l-arabinopyranosyl(l→6)]-2-acetamido-2-deoxy-β-d-glucopyranosyl acacic acid lactone (concinnoside D) (4), 3-O-[β-d-glucopyranosyl(l→2)]-β-d-glucopyranosyl oleanolic acid (5), 3-O-[α-l-arabinopyranosyl(1→2)-α-l-arabinopyranosyl(l→6)]-β-d-glucopyranosyl oleanolic acid (6), 3-O-[β-d-xylopyranosyl(1→2)-α-l-arabinopyranosyl(l→6)]-β-d-glucopyranosyl oleanolic acid (7), 3-O-[α-l-arabinopyranosyl(l→2)-α-l-arabinopyranosyl(1→6)-[β-d-glucopyranosyl(l→2)]-β-d-glucopyranoside echinocystic acid (8), and 3-O-[β-d-xylopyranosyl(l→2)-α-l-arabinopyranosyl(1→6)-[β-d-glucopyranosyl(l→2)]-β-d-glucopyranoside echinocystic acid (9)}. The structures of 1 and 2 were established on the basis of extensive 2D NMR (1H−1H COSY or DQF-COSY, HSQC, HMBC, TOCSY, and HSQC-TOCSY) spectroscopic, ESIMS, and chemical methods. Saponins 1, 3, 6, and 7 showed cytotoxicity against human head and neck squamous cells (JMAR, MDA1986) and melanoma cells (B16F10, SKMEL28) with IC50 values in the range 1.8−12.4 μM, using the MTS assay

    Integrated analysis of Xist upregulation and gene silencing at the onset of random X-chromosome inactivation at high temporal and allelic resolution

    Get PDF
    To ensure dosage compensation between the sexes, one randomly chosen X chromosome is silenced in each female cell in the process of X-chromosome inactivation (XCI). XCI is initiated during early development through upregulation of the long non-coding RNA Xist, which mediateschromosome-wide gene silencing. Cell differentiation, Xist upregulation and silencing are thought tobe coupled at multiple levels to ensure inactivation of exactly one out of two X chromosomes. Here we perform an integrated analysis of all three processes through allele-specific single-cellRNA-sequencing. Specifically, we assess the onset of random XCI with high temporal resolution indifferentiating mouse embryonic stem cells, and develop dedicated analysis approaches. By exploitingthe inter-cellular heterogeneity of XCI onset, we identify Nanog downregulation as its main trigger and discover additional putative Xist regulators. Moreover, we confirm several predictions of thestochastic model of XCI where monoallelic silencing is thought to be ensured through negativefeedback regulation. Finally, we show that genetic variation modulates the XCI process at multiplelevels, providing a potential explanation for the long-known Xce effect, which leads to preferentialinactivation of a specific X chromosome in inter-strain crosses. We thus draw a detailed picture of thedifferent levels of regulation that govern the initiation of XCI. The experimental and computationalstrategies we have developed here will allow us to profile random XCI in more physiological contexts,including primary human cells in vivo

    Genome-wide analysis of LXRalpha activation reveals new transcriptional networks in human atherosclerotic foam cells

    Get PDF
    Increased physiological levels of oxysterols are major risk factors for developing atherosclerosis and cardiovascular disease. Lipid-loaded macrophages, termed foam cells, are important during the early development of atherosclerotic plaques. To pursue the hypothesis that ligand-based modulation of the nuclear receptor LXRalpha is crucial for cell homeostasis during atherosclerotic processes, we analysed genome-wide the action of LXRalpha in foam cells and macrophages. By integrating chromatin immunoprecipitation-sequencing (ChIP-seq) and gene expression profile analyses, we generated a highly stringent set of 186 LXRalpha target genes. Treatment with the nanomolar-binding ligand T0901317 and subsequent auto-regulatory LXRalpha activation resulted in sequence-dependent sharpening of the genome-binding patterns of LXRalpha. LXRalpha-binding loci that correlated with differential gene expression revealed 32 novel target genes with potential beneficial effects, which in part explained the implications of disease-associated genetic variation data. These observations identified highly integrated LXRalpha ligand-dependent transcriptional networks, including the APOE/C1/C4/C2-gene cluster, which contribute to the reversal of cholesterol efflux and the dampening of inflammation processes in foam cells to prevent atherogenesis

    Allele frequencies of BRAFV600 mutations in primary melanomas and matched metastases and their relevance for BRAF inhibitor therapy in metastatic melanoma

    No full text
    Background: The detection of BRAFV600 mutations in patients with metastatic melanoma is important because of the availability of BRAF inhibitor therapy. However, the clinical relevance of the frequency of BRAFV600 mutant alleles is unclear. Patients and Methods: Allele frequencies of BRAFV600 mutations were analyzed byultra-deepnext-generation sequencing in formalin-fixed, paraffin-embedded melanoma tissue (75 primary melanomas and 88 matched metastases). In a second study, pretreatment specimens from 76 patients who received BRAF inhibitors were retrospectively analyzed, and BRAFV600 allele frequencies were correlated with therapeutic results. Results: Thirty-five patients had concordantly BRAF-positive and 36 (48%) patients had concordantly BRAF-negative primary melanomas and matched metastases, and four patients had discordant samples with low allele frequencies (3.4–5.2%). Twenty-six of 35 patients with concordant samples had BRAFV600E mutations, three of whom had additional mutations (V600K in two patients and V600R in one) and nine patients had exclusively non-V600E mutations (V600K in eight patients and V600E -c.1799_1800TG > AA- in one patient). The frequency of mutated BRAFV600 alleles was similar in the primary melanoma and matched metastasis in 27/35 patients, but differed by >3-fold in 8/35 of samples. BRAFV600E allele frequencies in pretreatment tumor specimens were not significantly correlated with treatment outcomes in 76 patients with metastatic melanoma who were treated with BRAF inhibitors. Conclusions: BRAFV600 mutation status and allele frequency is consistent in the majority of primary melanomas and matched metastases. A small subgroup of patients has double mutations. BRAFV600 allele frequencies are not correlated with the response to BRAF inhibitors

    Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children

    Get PDF
    Children have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates and a substantially lower risk for developing severe coronavirus disease 2019 compared with adults. However, the molecular mechanisms underlying protection in younger age groups remain unknown. Here we characterize the single-cell transcriptional landscape in the upper airways of SARS-CoV-2-negative (n = 18) and age-matched SARS-CoV-2-positive (n = 24) children and corresponding samples from adults (n = 44), covering an age range of 4 weeks to 77 years. Children displayed higher basal expression of relevant pattern recognition receptors such as MDA5 (IFIH1) and RIG-I (DDX58) in upper airway epithelial cells, macrophages and dendritic cells, resulting in stronger innate antiviral responses upon SARS-CoV-2 infection than in adults. We further detected distinct immune cell subpopulations including KLRC1 (NKG2A)+ cytotoxic T cells and a CD8+ T cell population with a memory phenotype occurring predominantly in children. Our study provides evidence that the airway immune cells of children are primed for virus sensing, resulting in a stronger early innate antiviral response to SARS-CoV-2 infection than in adults

    Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences

    No full text
    We report the sequences of 1,244 human Y chromosomes randomly ascertained from 26 worldwide populations by the 1000 Genomes Project. We discovered more than 65,000 variants, including single-nucleotide variants, multiple-nucleotide variants, insertions and deletions, short tandem repeats, and copy number variants. Of these, copy number variants contribute the greatest predicted functional impact. We constructed a calibrated phylogenetic tree on the basis of binary single-nucleotide variants and projected the more complex variants onto it, estimating the number of mutations for each class. Our phylogeny shows bursts of extreme expansion in male numbers that have occurred independently among each of the five continental superpopulations examined, at times of known migrations and technological innovations
    • …
    corecore