85 research outputs found

    EXPERIMENTAL INVESTIGATION AND NEURAL NETWORK PREDICTION OF THE PERFORMANCE OF A MIXED MODE SOLAR DRYER FOR COCONUT

    Get PDF
    The shelf life of agricultural food products may be enhanced by reducing their moisture contents, by means of a drying process. The present work aims at drying coconut yielding copra. This paper presents the design, analysis of a mixed mode solar dryer for food preservation and energy saving. In the mixed mode solar dryer, the drying cabinet absorbs solar energy directly through the transparent roof and during the same time the heated air from a solar collector is passed through a tray. Various measurements like solar radiation, mass flow rate, and moisture content and relative humidity have been observed. From previous literature four different models (Newton, Page, Henderson & Pabis and Wang & Singh) are chosen for testing the performance of mixed mode solar dryer. Selected models are evaluated by using EMD, ERMS, R2 and ðƓ’2 and it is concluded that page model is more suitable for the fabricated cabinet solar dryer at air flow rate 0.009Kg/s based on the experimental analysis. The direct radiant solar energy and a convective hot air stream dry the products, resulting in longer life for the products which are also free from impurities. The experimental results are utilized to evolve a suitable mathematical model, among the different models that are chosen, for copra. This will help in designing suitable dryers for actual users. Also, a multilayer neural network approach has been used to predict the performance of a mixed mode solar dryer for drying coconut. The simulation of neural network is based on the feed forward back propagation algorithm

    Extrapulmonary Tuberculosis—An Update on the Diagnosis, Treatment and Drug Resistance

    Get PDF
    Pathogenic Mycobacterium tuberculosis complex organisms (MTBC) primarily cause pulmonary tuberculosis (PTB); however, MTBC are also capable of causing disease in extrapulmonary (EP) organs, which pose a significant threat to human health worldwide. Extrapulmonary tuberculosis (EPTB) accounts for about 20–30% of all active TB cases and affects mainly children and adults with compromised immune systems. EPTB can occur through hematogenous, lymphatic, or localized bacillary dissemination from a primary source, such as PTB, and affects the brain, eye, mouth, tongue, lymph nodes of neck, spine, bones, muscles, skin, pleura, pericardium, gastrointestinal, peritoneum, and the genitourinary system as primary and/or disseminated disease. EPTB diagnosis involves clinical, radiological, microbiological, histopathological, biochemical/immunological, and molecular methods. However, only culture and molecular techniques are considered confirmatory to differentiate MTBC from any non-tuberculous mycobacteria (NTM) species. While EPTB due to MTBC responds to first-line anti-TB drugs (ATD), drug susceptibility profiling is an essential criterion for addressing drug-resistant EPTB cases (DR-EPTB). Besides antibiotics, adjuvant therapy with corticosteroids has also been used to treat specific EPTB cases. Occasionally, surgical intervention is recommended, mainly when organ damage is debilitating to the patient. Recent epidemiological studies show a striking increase in DR-EPTB cases ranging from 10–15% across various reports. As a neglected disease, significant developments in rapid and accurate diagnosis and better therapeutic interventions are urgently needed to control the emerging EPTB situation globally. In this review, we discuss the recent advances in the clinical diagnosis, treatment, and drug resistance of EPTB

    Primary Carcinoma of the Fallopian Tube: A Review of a Single Institution Experience of 8 Cases

    Get PDF
    Aims and Objectives. To evaluate the clinicopathologic features, response to cytoreductive surgery and adjuvant platinum-based chemotherapy with or without paclitaxel. Materials and Methods. A retrospective observational study of 8 women with a histopathologic diagnosis of primary fallopian tube carcinoma (PFTC) from January 2000 to February 2013. Results. 4/8 (50%) of the women were in the early stage and an intraoperative frozen section was 100% effective in identifying fallopian tube carcinoma and then a staging laparotomy was performed. All 4/8 cases in the early stage had received and responded to single agent carboplatin and all are alive without clinical, radiological, or biochemical evidence of recurrence at the end of 2 years and the longest survivor has completed 13 years. Primary optimal cytoreductive surgery was achievable in 3/4 (75%) in advanced disease. All showed response to adjuvant paclitaxel and carboplatin (T+C), but all had succumbed to the disease following recurrence with mean progression-free survival of 19 months (range 15–21 months) and mean overall survival of 27 months (range 22–36 months). Conclusion. The pivotal role played by a frozen section in diagnosing PFTC which is rare needs to be reemphasized, therefore justifying a primary staging laparotomy in an early stage. Prolonged survival observed in this group following an optimum tailored adjuvant single agent carboplatin is worth noting

    Phosphodiesterase-4 Inhibition Alters Gene Expression and Improves Isoniazid – Mediated Clearance of Mycobacterium tuberculosis in Rabbit Lungs

    Get PDF
    Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore