6 research outputs found

    Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    Get PDF
    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing \et measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS

    Fractional mathematical modeling of the Stuxnet virus along with an optimal control problem

    No full text
    In this digital, internet-based world, it is not new to face cyber attacks from time to time. A number of heavy viruses have been made by hackers, and they have successfully given big losses to our systems. In the family of these viruses, the Stuxnet virus is a well-known name. Stuxnet is a very dangerous virus that probably targets the control systems of our industry. The main source of this virus can be an infected USB drive or flash drive. In this research paper, we study a mathematical model to define the dynamical structure or the effects of the Stuxnet virus on our computer systems. To study the given dynamics, we use a modified version of the Caputo-type fractional derivative, which can be used as an old Caputo derivative by fixing some slight changes, which is an advantage of this study. We demonstrate that the given fractional Caputo-type dynamical model has a unique solution using fixed point theory. We derive the solution of the proposed non-linear non-classical model with the application of a recent version of the Predictor–Corrector scheme. We analyze various graphs at different values of the arrival rate of new computers, damage rate, virus transmission rate, and natural removal rate. In the graphical interpretations, we verify the values of fractional orders and simulate 2-D and 3-D graphics to understand the dynamics clearly. The major novelty of this study is that we formulate the optimal control problem and its important consequences both theoretically and mathematically, which can be further extended graphically. The main contribution of this research work is to provide some novel results on the Stuxnet virus dynamics and explore the uses of fractional derivatives in computer science. The given methodology is effective, fully novel, and very easy to understand

    The CMS experiment at the CERN LHC

    No full text
    The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t

    The CMS Barrel Calorimeter Response to Particle Beams from 2 to 350 GeV/c

    No full text
    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7±\pm1.6%\% and the constant term is 7.4±\pm0.8%\%. The corrected mean response remains constant within 1.3%\% rms
    corecore